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DEJEAN’S CONJECTURE HOLDS FOR N ≥ 27 ∗, ∗∗

James Currie1 and Narad Rampersad1

Abstract. We show that Dejean’s conjecture holds for n ≥ 27. This
brings the final resolution of the conjecture by the approach of Moulin
Ollagnier within range of the computationally feasible.
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Repetitions in words have been studied since the beginning of the previous cen-
tury [15,16]. Recently, there has been much interest in repetitions with fractional
exponent [1,3,6–8,10]. For rational r with 1 < r ≤ 2, a fractional r-power is a
non-empty word w = xx′ such that x′ is the prefix of x of length (r − 1)|x|. For
example, 010 is a 3/2-power. A basic problem is that of identifying the repetitive
threshold for each alphabet size n > 1:

What is the infimum of r such that an infinite sequence on n letters
exists, not containing any factor of exponent greater than r?

The infimum is called the repetitive threshold of an n-letter alphabet, denoted
by RT (n). Dejean’s conjecture [6] is that

RT (n) =

⎧⎨
⎩

7/4, n = 3
7/5, n = 4
n/(n− 1) n �= 3, 4.

Thue[16], Dejean [6] and Pansiot[13], respectively established the values RT (2),
RT (3), RT (4). Moulin Ollagnier [12] verified Dejean’s conjecture for 5 ≤ n ≤ 11,
and Mohammad-Noori and Currie [11] proved the conjecture for 12 ≤ n ≤ 14.

Recently, Carpi [3] showed that Dejean’s conjecture holds for n ≥ 33. Carpi’s
result is computation-free, and resolving Dejean’s conjecture is thus reduced to
filling a finite gap. Conceptually, one would hope that the gap could now be filled
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from below, using the methods of [11,12]. Since these approaches are computa-
tionally intensive, optimizing Carpi’s result is important. The present authors
improved part of Carpi’s constructions to show that Dejean’s conjecture holds for
n ≥ 30 (see [4]). In the present note we show that in fact Dejean’s conjecture
holds for n ≥ 27.

Remark 1. Some months after the first draft of this paper, its goal has been
vindicated: the final resolution of the conjecture via methods of Moulin Ollagnier
becomes computationally feasible; in a recent paper the present authors proved
Dejean’s conjecture by resolving computationally the cases n ≤ 26. Dejean’s
conjecture is correct! (See [5] and also [14] for another independent proof.)

The following definitions are from [3]: for any non-negative integer r let Ar =
{1, 2, . . . , r}. Fix n ≥ 27. Let m = �(n−3)/6�. If a is a letter, then let |v|a denote
the number of occurrences of a in the word v. Let ker ψ = {v ∈ A∗

m | ∀a ∈ Am,
4 divides |v|a}. (We use this as a definition; it is in fact the assertion of Carpi’s
Lem. 9.1.) A word v ∈ A+

m is a ψ-kernel repetition if it has period q and a
prefix v′ of length q such that v′ ∈ ker ψ and (n − 1)(|v| + 1) ≥ nq − 3. In [4] we
introduced the following definition: if v has period q and its prefix v′ of length q
is in ker ψ, we say that q is a kernel period of v.

Let B = {0, 1} and let Sn be the permutation group on n elements. Consider
the morphism φ : B∗ → Sn generated by

φ(0) = (1 2 3 · · · (n− 1))

φ(1) = (1 2 3 · · · (n− 1) n).

This map is due to Pansiot [13]. A word u ∈ B∗ is a k-stabilizing word if φ(u)
fixes {1, 2, 3, . . . , k}. The set of k-stabilizing words (for fixed n) is denoted by
Stabn(k). Note that if i < j then Stabn(j) ⊆ Stabn(i).

A map γn : B∗ → A∗
n is defined by

γn(b1b2 . . . b�) = a1a2 . . . a�

where aiφ(b1b2 . . . b�) = 1 for 1 ≤ i ≤ �.
Carpi introduces a morphism f : A∗

m → B∗ generated by

f(1) = ypx(101)2m

f(a) = ypx(101)2m−2a010(101)2a−1

where 2 ≤ a ≤ m, p = �n/2�, y is the suffix of (01)n of length n− 1 and x is the
suffix of y of length |y| − 6m.

The concepts of so-called short repetitions and kernel repetitions were in-
troduced by Moulin Ollagnier [12]. His work is complicated by the fact that his
short repetitions are words over An, while his kernel repetitions are words over B
(although they code words over An via Pansiot’s map). Without going into the
details, we recall that he reduced the construction of an infinite word over n letters
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attaining threshold n/(n− 1) to avoiding both short repetitions and kernel repe-
titions. Moulin Ollagnier’s binary words were fixed points of morphisms. In [11],
a technique was introduced for dealing separately with short repetitions and ker-
nel repetitions; the binary words given there can be viewed as being produced by
HD0L’s: they have the form g(hω(0)) where all words coded by g(B∗) avoid short
repetitions, and each h is chosen to eliminate kernel repetitions.

Carpi’s work follows essentially this strategy. The lemmas of his paper show
that f(B∗) avoids short repetitions if n ≥ 30. Form = 5 (corresponding to n ≥ 33)
he produces an infinite word w5 over Am such that f(w5) avoids kernel repetitions.
The exact statement of this division of work into short vs. kernel repetitions is the
following:

Proposition 2 ([3], Prop. 3.2). Let v ∈ B∗. If a factor of γn(v) has expo-
nent larger than n/(n − 1), then v has a factor u satisfying one of the following
conditions:

(i) u ∈ Stabn(k) and 0 < |u| < k(n− 1) for some k ≤ n− 1;
(ii) u is a kernel repetition of order n.

In our previous note, we improved only the second part of Carpi’s construction;
he had shown that for n ≥ 30, no factor u of f(A∗

m) satisfied condition (i) above.
As Carpi therefore states at the beginning of Section 9 of [3]:

By the results of the previous sections, at least in the case n ≥ 30,
in order to construct an infinite word on n letters avoiding factors
of any exponent larger than n/(n − 1), it is sufficient to find an
infinite word w on the alphabet Am avoiding ψ-kernel repetitions.

For m = 5, Carpi was able to produce such an infinite word, based on a paper-
folding construction. He thus established Dejean’s conjecture for n ≥ 33. The
present authors refined this by constructing an infinite word w4 on the alphabet
A4 avoiding ψ-kernel repetitions. This established Dejean’s conjecture for n ≥ 30.
We remark that for 30 ≤ n ≤ 32 the word on An verifying Dejean’s conjecture for
n is γn(v), where v = f(w4).

In the present note, we improve on the first aspect of Carpi’s attack, by showing
that for 27 ≤ n ≤ 29, no factor u of v = f(w4) satisfies (i) above. This implies
that Dejean’s conjecture holds for n ≥ 27. Since f is r-uniform where r = (p +
1)(n− 1), to show that (i) holds for v it suffices to check that no factor u ∈ f(B3)
satisfies (i). In principle, this involves considering all factors of f(B3) of length less
than (n − 1)2. However, we shorten this computation considerably by combining
several of Carpi’s lemmas.

Lemma 3. Suppose n ≥ 18. Suppose that u ∈ f(A∗
m)∩Stabn(k) and |u| < k(n−1)

for some k ∈ {1, 2, . . . , n−1}. Then |u| = r(n−1) for some r, p+1 ≤ r < k ≤ 16.

Proof. Propositions and lemmas referenced in this proof are in [3]. By Proposi-
tion 5.1, k ≥ 4 so that u ∈ Stabn(4). It then follows from Proposition 6.3 that
|u| ≥ (p+ 1)(n− 1). Since |u| < k(n− 1), we deduce that k > p+ 1. From n ≥ 18
this means that k > 10, so that surely u ∈ Stabn(7). Applying Lemma 7.1, we see
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that |u| is divisible by n− 1. We may thus write |u| = r(n− 1), p+ 1 ≤ r < k. By
the contrapositive of Proposition 7.2, u �∈ Stabn(17). It follows that k ≤ 16. �

We verify that Dejean’s conjecture holds for n = 27, 28, 29 by exhaustively
examining factors u of f(B3) of length r(n − 1) for p+ 1 ≤ r ≤ 15, and verifying
that such u are not in Stabn(k) for any k, r < k ≤ 16. For n = 28, 29, the check
only involves r = 15, k = 16. For n = 27, we also must consider r = 14. Code
written in SAGE running on a PC performed the necessary verifications in about
half an hour. The code is available at www.uwinnipeg.ca/~currie/kstab.sage.
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