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Abstract: The problem considered in this paper is one of extracting perceptually relevant 
information from groups of objects based on their descriptions. Object descriptions are 
qualitatively represented by feature-value vectors containing probe function values computed in a 
manner similar to feature extraction in pattern classification theory. The work presented here is a 
generalisation of a solution to extracting perceptual information from images using near sets 
theory which provides a framework for measuring the perceptual nearness of objects. Further, 
near set theory is used to define a perception-based approach to image analysis that is inspired by 
traditional mathematical morphology and an application of this methodology is given by way of 
segmentation evaluation. The contribution of this article is the introduction of a new method of 
unsupervised segmentation evaluation that is base on human perception rather than on properties 
of ideal segmentations as is normally the case. 

Keywords: perception; near sets; morphology; unsupervised segmentation evaluation; probe 
functions; image analysis. 

Reference to this paper should be made as follows: Henry, C. and Peters, J.F. (2010) ‘Perceptual 
image analysis’, Int. J. Bio-Inspired Computation, Vol. 2, Nos. 3/4, pp.271–281. 

Biographical notes: Christopher Henry received his MSc in 2006 from the University of 
Manitoba. Currently, he is a full time PhD student in the Department of Electrical and Computer 
Engineering (ECE) at the University of Manitoba. He is also the President of the ECE Graduate 
Students’ Association (GSA) as well as a Councillor at the University of Manitoba GSA. Since 
2004, he has published 12 articles (five journal publications, six conference publications and one 
book chapter) on topics in the areas of reinforcement learning, rough sets, intelligent systems, 
near sets and image processing. His current research interests are in reinforcement learning, 
rough set theory, approximation spaces, near sets, image processing, pattern recognition and 
intelligent systems. 

James F. Peters, PhD (1991), is Co-founder and Research Group Leader in the Computational 
Intelligence Laboratory (http://wren.ece.umanitoba.ca/) and Full Professor in the Department of 
Electrical and Computer Engineering (ECE) at the University of Manitoba. In 2002, he 
collaborated with Zdizisław Pawlak on a descriptive view of the nearness of physical objects. In 
2006, he introduced near sets, a generalisation of rough sets. This has led to feature-based 
solutions to the image correspondence problem. His current research interests are in tolerance 
spaces, image analysis, image correspondence, fuzzy sets, near sets, especially tolerance near sets 
and rough sets. 

 

1 Introduction 

This paper introduces a near set solution to the segmentation 
evaluation problem. Image segmentation is a partition of an 
image into non-overlapping regions where each region is 
associated with some perceptual meaning. Here, the term 
perception is understood in the context of psychophysics 
where perception is based on the relationship between visual 
stimuli and sensations (Bruce et al., 1996). Our senses can 
be considered a form of sensor or probe function providing 
information about the objects in our environment. Thus, we 
are interested in perception of objects based on object 

descriptions and perception of objects based on classes 
created by object descriptions. Recently, it has been shown 
that near sets can be used in a perception-based approach to 
discovering correspondences between images based on 
object descriptions (see, e.g., Gupta and Patnaik, 2008; 
Peters, 2009a, 2008b; Peters and Wasilewski, 2009). 
Moreover, the perceptual approach to image analysis 
presented in this article is an outgrowth of research into 
applying near sets to the image processing problems of 
segmentation, segmentation evaluation (Henry and Peters, 
2008), pattern recognition (Henry and Peters, 2007, 2009; 
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Peters, 2009a), face recognition systems (Gupta and 
Patnaik, 2008) and medical imaging (Hassanien et al., 
2009). Work on a basis for near sets began in 2002, 
motivated by image analysis and inspired by a study of the 
perception of the nearness of perceptual objects carried out 
in cooperation with Z. Pawlak in Pawlak and Peters (2002). 
This initial work led to the introduction of near sets in 
Peters (2007a), which were further elaborated in Peters, 
(2007b, 2009c) and Peters and Wasilewski (2009). 

There is a strong connection between near sets and 
rough sets (see, e.g., Peters and Wasilewski, 2009; Peters, 
2009a). Briefly, any non-empty set X  with non-empty 
approximation boundary between upper and lower 
approximations is a set that is approximately classified and 
such a set is called a rough set (Pawlak, 1981). Sets 
containing objects with similar descriptions are called near 
sets. That is, any non-empty set X  containing perceptual 
objects with description similar to the description of 
perceptual objects in a set Y  is an example of a near set; 
i.e., the set X  is perceptually near the set .Y  It can be 
shown that every rough set is a near set and yet, there are 
near sets that are not rough sets. Hence, near sets (Peters, 
2007a, 2007b, 2007c, 2009a, 2009c; Peters et al., 2007) are 
considered a generalisation of rough sets (Peters, 2007b). It 
can also be shown that there is a connection between near 
sets and fuzzy sets (see, e.g., Peters, 2009a, 2009b). 

The discovery of near sets begins with the selection of 
probe functions that provide a basis for describing and 
discerning affinities between sample objects (see, e.g., 
Peters, 2007a, 2008a; Skowron and Peters, 2008). A probe 
function is a real-valued function representing features of 
physical objects. The perceptual approach of near set theory 
is based on the idea that our mind identifies relationships 
between object features to form perceptions of sensed 
objects. Our senses gather the information of the objects we 
perceive and map sensations to values assimilated by the 
mind. Thus, our senses can be likened to perceptual probe 
functions in the form of a mapping of stimuli from objects 
in our environment to sensations (values used by the mind 
to perceive objects). It is this idea of probe functions that is 
at the heart of near sets. 

In keeping with an insight by Serra (1982) concerning 
the perception of images, one first transforms an image  
in some fashion and then one measures the transformed 
image. In our case, thanks to the discovery by Pawlak 
(1981), a special form of equivalence relation called  
an indiscernibility relation makes a feature-based 
transformation of images possible. This is achieved by 
viewing an image as a set of points and then discovering 
affinities by comparing the descriptions of images regions, 
e.g., descriptions of sub-images or pixels contained in 
classes found in partitions of images. In this article, we give 
a practical application of near sets to the problem of 
evaluating the quality of image segmentations by way of 
extracting perceptually relevant information from a set of 
objects where each object has an associated vector 
describing object features (perceived object characteristics 
such as colour). It is the information contained in these 

vectors that are used to extract perceptual information from 
classes of objects and to measure similarity among them. 
The contribution of this article is an introduction to a new 
method of unsupervised segmentation evaluation. This 
article is organised as follows: Section 2 presents a review 
of perception-based image processing using the framework 
established by near sets. Section 3 introduces perceptual 
morphology and Section 4 gives an application of  
the new morphology by way of unsupervised segmentation 
evaluation. 

2 Perceptual image processing 

This section introduces near sets and gives examples of their 
application to image processing. Formally, let O  represent 
the set of all objects. Then, a description of an object x O∈  
is given by: 

( )1 2( ) ( ), ( ), , ( ), , ( ) ,= … …i lx x x x xφ φ φ φ φ  

where l  is the length of the description and each ( )i xφ  is a 
probe function that describes the object .x  Furthermore, we 
can define a set F  that represents all the probe functions 
used to describe an object .x  Next, a perceptual information 

system S  can be defined as { }, ,=
i

i

S O Val
∈φ φ F

F  where 

F  is the set of all possible probe functions that take as the 
domain objects in O  and { }i

i

Val
∈φ φ F

 is the value range of a 

function .i ∈φ F  For simplicity, a perceptual system is 
abbreviated as ,O F  when the range of the probe functions 
is understood. 

Definition 1. Indiscernibility Relation: Let ,O F  be a 
perceptual system. For every ⊆ FB  the indiscernibility 
relation ∼ B  is defined as follows: 

{ }( , ) : ( ) ( ) 0 ,= × − =∼ φ φx y O O x y∈B  

where || ||⋅  represents the 2l  norm. If { }= φB  for some 
,∈φ F  instead of { }∼ φ  we write .∼ φ  

Definition 1 is a refinement of the original indiscernibility 
relation given by Pawlak (1981). Using the indiscernibility 
relation, objects with matching descriptions can be grouped 
together forming granules of highest object resolution 
determined by the probe functions in .B� This gives rise to 
an elementary set: 

{ },=∼ ∼x / y O y x∈B B  

defined as a set where all objects have the same description. 
Similarly, a quotient set is the set of all elementary sets 
defined as: 

{ }.=∼ ∼O / x / x O∈B B  
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Near set theory can be easily applied to images. For 
example, let us define a RGB image as { }1 2, , , ,= … Tf p p p  

where [ ] [ ] [ ]( , , , , ) , 1, , 1, , , , 0,255=i c r RG B c M r N RG B∈ ∈ ∈Tp  
and ,M N  respectively denote the width and height of the 
image and .× =M N T  Further, define a square sub-image 
as if f⊂  with the following conditions: 

1 2

1 2

0,
,

= /
=

…
…

s

s

f f f

f f f f

∩ ∩

∪ ∪
 (1) 

where s  is the number of sub-images in .f  We restrict all 
sub-images to be square except when doing so violates 
equation (1). For example, the images in the Berkeley 
segmentation dataset (Martin et al., 2001) often have the 
dimension 321 × 481. Consequently, a square sub-image 
size of 25 will produce 6,240 square sub-images, 96  
sub-images of size 1 × 5, 64 sub-images of size 5 × 1 and 
one sub-image consisting of a single pixel. Next, we can 
define O  as the set of all sub-images, i.e., { }1, , ,= … sO f f  
and F  is a set of functions that operate on images (see, e.g., 
Table 1 for examples of probe functions used in this paper 
or Marti et al. (2001) for other examples). Once the set B� 
has been selected, the elementary sets are simply created by 
grouping all objects with the same description and the 
quotient set is made up of all the elementary sets. Finally, a 
simple example of these concepts is given in Figure 1 where 
the left image contains an octagon with a radius of 100 
pixels located at the centre of the 400 × 400 image and the 
right image contains the elementary sets obtained using 

( ){ }avg= sfφB�  and a sub-image size of 10 × 10. 

Table 1 Example probe functions 

iφ  Description 

( )avg sfφ  Average greyscale value of sub-image 

( )IC sfφ  Information content of sub-image (Henry and 
Peters, 2008, 2009) 

( )NormR sfφ  Average normalised R value of sub-image 
(Marti et al., 2001) 

Observe that three elementary sets are obtained in  
Figure 1(b), namely, the light grey background, the dark 
grey octagon interior and the black squares along the 
diagonals. The black squares are created by sub-images that 
contain both black and white pixels (in the original image) 
and are located only on the diagonals due to the sub-image 
size and shape, and the position and radius of the hexagon. 
All other sub-images are uniformly white or black. Thus, we 
are presented with perceptual information in the form of 
three equivalence classes when restricted to only being able 
to describe the original image with the probe function 

( ){ }avg= sfφB�  and a sub-image size of 10 × 10. This 

example clearly demonstrates that perceptual information 
obtained from the application of near set theory is 
represented by the elementary sets (formed by the grouping 

of objects with similar descriptions), and the information 
gained is always presented with respect to the probe 
functions contained in .B� 

Figure 1 Example of near set theory in the context of image 
processing, (a) original image (b) elementary sets 
obtained from (a) using ( )avg sfφ  

 
(a) (b) 

3 Morphological image processing 

This section introduces a new form of morphological image 
processing based on perception rather than geometry. 
Gonzalez and Woods (2002) define morphology as the 
study of form and structure in complex biological 
organisms. Similarly, they define mathematical morphology 
in terms of set theory where the sets consist of tuples 
containing pixel coordinates in a binary image. We propose 
a new form of morphology, inspired by traditional 
morphology, in which the operations are based on objects 
defined in near set sense. The next two subsections first 
introduce mathematical morphology as it is commonly 
presented followed by our perceptual-based approach. 

3.1 Mathematical morphology 

The following review uses the same notation given in 
Gonzalez and Woods (2002). Mathematical morphology 
starts with the assumption that an image is a set of points. 
Then image points (pixels) are represented by two 
dimensional vectors. With this view of an image, it is then 
possible to consider set theory-based operations on images, 
namely, dilation ⊕ and erosion Ө. Let the �̂  operator 
represent the reflection of a set ,B  defined as: 

{ }ˆ , ,= = − ∀B w w b b B∈  

and let the operator ( )⋅ z  denote the translation of a set by 

point ( )1 2, ,=z z z
T that is, 

{ }( ) , .= = + ∀zA c c a z a A∈  

Then we can respectively define the dilation and erosion of 
an image A  by a structuring element (SE) B  as: 

( ){ }ˆ ,φ= ≠
z

A B z B A⊕ ∩  
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and an erosion operation A B⊕  is: 

( ){ },=
z

A B z B A⊆  

where A  usually indicates the image to be transformed, and 
the SE B  consists of a geometric arrangement of pixels in 
which the shape and binary value of the pixels play an 
important role in the transformation of .A  A simple 
example of dilation and erosion is given in Figure 2 [see 
both Dougherty and Lotufo (2003) and Gonzalez and 
Woods (2002) for more examples]. Notice that dilation and 
erosion operators respectively cause the set A  to grow and 
reduce in size, where the terms grow and reduce are defined 
with respect to area since the objects in the sets correspond 
to coordinates of pixels. 

Figure 2 Example of mathematical morphology, (a) segment 
obtained from Berkeley segmentation dataset (Martin 
et al., 2001), (b) dilation of (a) using square a SE of 
width 5 and (c) erosion of (a) using the same SE 

 
 (a) (b) (c) 

3.2 Perceptual morphology 

If set theory is the language of mathematical morphology, 
then near set theory is language of perceptual morphology. 
The central idea between the two approaches is the same, 
i.e., both methods increase or decrease set membership 
based on comparison with an SE. The difference lies in the 
definition of the objects, in particular, the perceptual 
approach defines objects in the near set sense. Thus, objects 
can be anything as long as it is possible to define probe 
functions that operate on the objects under consideration. In 
terms of image processing, the goals are the same. 
Mathematical morphology is used for identifying structure 
(Gonzalez and Woods, 2002), whereas the near set approach 
is used to identify perceptual concepts in images. The latter 
is similar to the former in that identification of structure 
facilitates human perception of images (Wang et al., 2004b). 

We propose to use the same approach as mathematical 
morphology to introduce a new morphology that the 
perceptual information inherent to near set theory. Again, let 
the set of objects be represented by O  and the quotient set, 
as given above, is ,∼O/ B  where B  is a set of probe 
functions on objects in O  selected from .F� Now, define a 
set A O⊆  such that it has some a priori perceptual meaning 
associated with it, i.e., this set has definite meaning in a 
perceptual sense outside of the probe functions in .B�� Next, 
let the quotient set represent the SE from traditional 
mathematical morphology, in other words let 1.= ∼/B O B  

As will be seen shortly, the quotient set is used as the SE in 
perceptual morphology, since it contains the perceptual 
information necessary to augment the set A  in a 

perceptually meaningful way. This perceptual information is 
in the form of elementary sets (collections of objects with 
the same descriptions) since, as was mentioned, we perceive 
objects by the features that describe them and that people 
tend to grasp not single objects, but classes of them 
(Orłowska, 1982). 

Keeping the above in mind, we define perception-based 
dilation as: 

{ }0 ,= ≠ /∼ ∼/ /A B x B x A⊕ ∈ ∩
B B

 (2) 

and the perception-based erosion is defined as: 

{ }.
B∼

∼∪
∈/

/
x

A B = x A∩
B

B

 (3) 

Notice that set A  is grown perceptually by the SE B  (and 
consequently by the probe functions in )B  using the 
dilation operator by including objects in the result that have 
similar descriptions to those contained in .A  In other words, 
the dilation operation perceptually enhances the set A  by 
including the full membership of the elementary sets that 
have at least one object in .A  Conversely, the erosion 
operation essential masks the set B  (using )A  by including 
in the result only the portions of the elementary sets 
contained in A  already. Thus, perceptual information can 
be reduced if the entire elementary set is not contained in 
the result. 

By way of example, the above concepts are illustrated 
with images. Using the definition of an image and  
sub-image given in Section 2, let O  contain sub-images as 
objects, i.e., { }1 2, , ,= … sO f f f  and let A  be a subset of the 
sub-images2. Then, the SE, ,= ∼/B O

B
 can be viewed as an 

image where each class is assigned a unique colour (or grey 
value). Similarly, the results of dilation and erosion can be 
viewed as images as well where the objects in the result are 
assigned the same colour as the objects in B  and the rest of 
the image can be coloured white representing an absence of 
objects (since not all of the sub-images in the original image 
will be included in the result). 

Figure 3 is an example of these techniques applied to a 
simple greyscale image containing five circles in which a 
gradient operation from white to black was applied as 
shown in Figure 3(a). The gradient was used so that there is 
no crisp boundary to indicate the start of the circle. Next, 
Figure 3(b) contains the elementary sets created using a  
sub-image size of 10 × 10 and ( ){ }avg= sfφB�  where each 

colour represents a different set. Notice that each circle has 
similar elementary sets since they are identical (except for 
the centre circle which is slightly larger). Next, Figure 3(c) 
contains the set A  representing a priori perceptual 
information in this case it is a segment representing the 
point at which the centre circle is predominately black. The 
result of perceptually growing the segment using  
the dilation operator defined in equation (2) is given in 
Figure 3(d)3. Notice that the results show that we were able 
to grow the segment A  to include the other four circles that 
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are perceptually similar with respect to the probe functions 
in .B�� Thus, we were able to gain more perceptual 
information about the segment represented by .A  Similarly, 
the result of perceptually reducing A  using equation (3) is 
given in Figure 3(e). Perceptual information is reduced in 
that we are not taking full advantage of all the information 
contained in = ∼/B O

B
 because there is no representation of 

the other four circles in the result which are perceptually 
similar to the centre circle. However, the operation is still 
useful in that it gives us perceptual information (in the form 
of elementary sets) about A  with respect to the probe 
functions in .B�� 

Figure 3 Example of perceptual morphology on simple 
greyscale image, (a) original image, (b) quotient set of 
(a) created using method described in Section 2,  
(c) perceptual segmentation of the centre circle in (a), 
(d) perceptual dilation of (b) and (e) perceptual erosion 
of (b) 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Another example of perceptual morphology is given in 
Figure 4. In this case, Figure 4(a) contains an image from 
the Berkeley segmentation dataset (Martin et al., 2001) and 
Figure 4(c) is a single ground truth segment from the same 
dataset. As before, Figure 4(b) contains the elementary sets, 
this time created using a sub-image of size 2 × 2 and 

( ) ( ){ }IC NormG, .= s sf fφ φB�  Notice, for the most part, that the 

elementary sets represent perceptual concepts of the image, 
e.g., the horses tend to share the same elementary sets which 
differ from those of the background. Next, the set A  
represented by the segment of the younger horse is 
perceptually dilated in Figure 4(d). Again, the result now 
includes other areas of the image that are perceptually 
similar (with respect to probe functions in )B  including the 

other horse and parts of the background. Recall that we may 
not find the background perceptually similar to the horse but 
the similarity occurs using only the probe functions in ,B� 
i.e., information content and the normalised green value 
from the RGB colour model. Similar to the last example, the 
perceptual reduction caused by the erosion operator occurs 
due to the lack of inclusion of the full elementary sets in the 
result. Although, as was mentioned before, this result still 
contains perceptually valuable information of the original 
set A  as will be seen in Section 4. 

Figure 4 Example of perceptual morphology on image from 
Berkeley segmentation dataset (Martin et al., 2001),  
(a) original image, (b) quotient set of (a) created using 
method described in Section 2, (c) perceptual 
segmentation of younger horse in (a), (d) perceptual 
dilation of (b) and (e) perceptual erosion of (b) (see 
online version for colours) 

  
(a) (b) 

  
(c) (d) 

 
(e) 

4 Application 

This section presents an application of perceptual 
morphology in the form of a method for segmentation 
evaluation called the near set index (NSI) first introduced in 
Henry and Peters (2008). The NSI index was created out of 
a need for an unsupervised segmentation evaluation method 
that could be used in real world systems yet still based on 
human perception rather than characteristics of ideal 
segmentations that is popular in most unsupervised 
segmentation evaluation methods. This section begins with 
a discussion of segmentation evaluation followed by an 
introduction of a popular segmentation technique called the 
mean shift algorithm (Comaniciu, 2002) which is the 
method used to generate segmentations in this article. Next, 
a supervised segmentation evaluation measure called the 
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normalised probabilistic rand (NPR) index (Unnikrishnan et 
al., 2007) is presented as a benchmark for the NSI index. 
Finally, a description of the NSI index is given with some 
examples. 

4.1 Segmentation evaluation 

There are generally three classes of segmentation evaluation 
techniques, namely, analytic, empirical discrepancy and 
empirical goodness methods (Zhang, 1996; Zhang et al., 
2005a). Analytic methods generally perform evaluation 
solely by examining the algorithm without considering the 
resultant segmentations. These methods are concerned with 
processing complexity and strategy and are not useful for 
evaluating the perceptual relevance of a given segmentation. 
The next category is empirical discrepancy (also called 
relative or supervised evaluation) and is characterised by the 
comparison of the test segmentation with ground truth 
images (segmentations performed by people or experts). 
These methods are popular because they evaluate 
segmentations based on the perceptual groupings created by 
people which are the end result of any segmentation 
algorithm. Unfortunately, it is not realistic to assume that 
systems incorporating image segmentation will have access 
to ground truth images and so these methods are generally 
used for the comparison of segmentation algorithms during 
the design phase. The last type of segmentation category is 
called empirical goodness (also known as standalone or 
unsupervised). These methods are based on some properties 
that ideal segmentations should contain. Generally, it is 
more difficult for these evaluation methods to be based on 
human perception of objects due to the lack of ground truth 
input or a formal framework for the quantification of 
perception and similarities of objects. 

There are many examples of empirical goodness 
methods for segmentation evaluation. For example, Zhang 
et al. (2005a) implements a co-evaluation framework in 
which multiple unsupervised methods are combined with 
learning algorithms to take advantage of different measures. 
Examples of the measures they consider are ones based on 
squared colour error ratio to segment area (Borsotti et al., 
1998; Liu and Yang, 1994), on entropy (information 
content) of an image and the minimum description length 
principle (MDL) (Zhang et al., 2005b), on the geometric 
shape of a segment (e.g., compactness, circularity and 
elongation), and a contrast measure between the inside and 
outside of a segment (Correia and Pereira, 2003). Similarly, 
Chabrier et al. (2004) present a review of six unsupervised 
methods based on image features such as segmentation 
contrast, standard deviation and colour error. Likewise, 
Zhang (1996) is another often cited survey of segmentation 
evaluation techniques also describing unsupervised 
measures where again the unsupervised methods are based 
solely on image characteristics. Notice that all these 
methods suffer because of the lack of the perceptual 
information contained in a ground truth image or the lack of 
a formal framework for the quantification of perception and 
similarity of objects introduced by near set theory. This is a 

problem we attempt to rectify with the introduction of the 
NSI. 

4.2 Mean shift segmentation algorithm 

The mean shift algorithm, introduced in Comaniciu (2002), 
is an image segmentation algorithm that creates segments 
based on the assumption that the image can be represented 
by a mixture model of multivariate density functions. The 
basic idea is that for each pixel the mean shift algorithm 
iteratively searches for a mode (peak) in the local density. 
Then, a pixel is assigned to the region for which all pixels 
have the same mode (peak) (Wang et al., 2004a). The 
process of finding the modes for an image is based on 
theory from the field of kernel density estimation. This is a 
non-parametric technique for estimating the probability 
density function of a random variable based on 
observations. Specifically, both the number of observations 
within a volume in -dimensionald  space centred on x and a 
kernel that weights the importance of the observations 
determines the estimate of the distribution (Duda et al., 
2001). The segmentations used in this article were created 
using the implementation of the mean shift algorithm called 
EDISON (Christoudias et al., 2002), a system for which 
both the source code and binaries are freely available online. 

4.3 Normalised probabilistic rand index 

The NPR index [introduced in Unnikrishnan et al. (2007) 
and summarised here] is a non-parametric technique for 
evaluating the performance of an image segmentation 
algorithm. This index is a supervised technique in that 
evaluation is performed with respect to ground truth images. 
A supervised measure was selected as the benchmark for the 
NSI index since human perceptual grouping is inherent to 
the evaluation of the segmentation due to the use of ground 
truth images. Furthermore, the NPR index was selected due 
to its use of multiple ground truth images when evaluating a 
proposed segmentation thus taking into account multiple 
perceptual sources. 

The NPR index has its roots in the rand index, a measure 
developed based on the idea of counting pixel pairs that 
have the same segmentation labels. First, define an image 

{ }1, , N= …X x x  of N  pixels and two segmentations of 
,  and ′X S S  where each segmentation respectively assigns 

labels and ′i il l  to the pixels in .X  Then the rand index is 
given as: 

( ) ( ) ( ) ( )
,

2

1, ,

≠

⎡ ⎤′ ′ ′ ′ ′= ∏ = ∧ = +∏ = ∧ =/ /⎣ ⎦∑
i j

i j i j i j i j
i j

R S S l l l l l l l l
N

where Π is the identity function and ( )2
N  is the number of 

unique pixel pairs in .X  Next, the rand index was extended 
to allow the use of more ground truth images in the 
evaluation of a proposed segmentation. The idea is that 
observing the same pixel pair in each ground truth image is 
considered a Bernoulli trial with the two outcomes being 
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either they have the same label or they do not. Then, the set 
of observations across all ground truth segmentations forms 
a Bernoulli distribution with expected value .ijp  Thus, 

given a set of manual segmentations { }1, , ,… KS S  a 

segment for evaluation testS  and a label of ix  denoted as S
il  

where S  denotes the segment used to label ,ix  the 
probabilistic rand (PR) index is defined as: 

{ }( ) ( ) ( )( )
,

2

1, 1 1 ,⎡ ⎤= + − −⎣ ⎦∑
i j

k ij ij ij ij
i j

PR S S c p c p
N

<

test  

where 

( ).= ∏ =S S
ij i jc l ltest test  

Finally, the NPR index extends the PR index by normalising 
with respect to its baseline. The selected baseline is the 
expected value of PR index. Consequently, the NPR index 
is defined as: 

[ ]
[ ]max( ) '

−
=

−

E
E

PR PR
NPR

PR PR
 

where the maximum value is taken to be 1 and the expected 
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representative of perceptually consistent groupings, ′ijp  is 
estimated from segmentations of all images for all 
unordered pairs. In other words, given Φ as the number of 
images in the database used for testing, ′ijp  is defined as: 
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4.4 Near set index 

This section introduces a method for segmentation 
evaluation using perceptual morphology presented above. 
The goal of image segmentation is to partition an image into 
disjoint regions such that each one reflects some perceptual 
component of the image4. Since it has been observed that 
the quotient set captures perceptual information of objects 
(Orłowska, 1985), it makes sense to use the quotient set to 
measure the quality of a segmentation, i.e., the degree to 
which a segmentation represents an image component. 

Let f  represent an RGB image and let A  represent a 
priori information in the form of an image segment. Then, 
the result of perceptual erosion can be used to evaluate the 
quality of the segment since it only contains perceptual 
information about the set .A  Further, since this set should 
represent a perceptual component within f  and the quotient 
set represents perceptual information about the sub-images 
in ,O  it should be possible to select probe functions in B  
such that the elementary sets begin to represent these 
components. As such, we propose that a good measure of 
segmentation quality is the variability of the classes 
contained in the perceptual erosion of .A  In general, the 
measure of variability of objects that take on labels from a 
discrete set is called the information content and it takes on 
values in the interval [ ]20, log L  where L  is the number of 
different labels the objects can assume (MacKay, 2003; 
Seemann, 2002). A value of 0 is produced when the objects 
contain all the same labels and the highest value occurs 
when each label occurs with equal frequency. Thus, for this 
application, low value of information content of the erosion 
of A  corresponds to good segmentations and vice versa. 
This leads to the following definition: 

Definition 2. NSI: Let A  represent a single image segment 
for evaluation, and let = ∼/B O B  represent the quotient set 
obtained using the probe functions in .B� Then, the NSI is 
the information content of the perception-based erosion of 

.A  

4.5 Shannon and Pal entropy 

Shannon’s entropy (also called information content) is a 
measure of the information gained in a system by receiving 
a message from a finite set of messages, and is very useful n 
image processing. Work in Pal and Pal (1991, 1992) shows 
that Shannon’s definition of entropy has some limitations. 
The following reviews Shannon’s definition of entropy and 
presents exponential entropy introduced in Pal and Pal 
(1991). 

Let the probability of receiving a message i  of n  
messages be ,ip  then the information gain of a message can 
be written as: 

( ) ( )log 1 log ,Δ = = −i iI p p  (4) 

and the entropy of the system is the expected value of the 
gain and is calculated as: 

( )
1

log .
=

= −∑
n

i
i

H pi p  

Shannon’s definition of entropy suffers from the following 
problems: it is undefined when 0;=ip  in practise the 
information gain tends to lie at the limits of the interval  
[0, 1]; and statistically speaking, a better measure of 
ignorance is 1− ip  rather than 11 p  (Pal and Pal, 1991). As 
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a result, a new definition of entropy can be defined with the 
following desirable properties: 

P1 ( )Δ iI p  is defined at all points in [0, 1] 

P2 ( ) ( )0 1 1lim 0 , 0→ Δ = Δ = =
ip i iI p I p k k >  and finite 

P3 ( ) ( )1 2 2lim 1 , 0→ Δ = Δ = =
ip i iI p I p k k >  and finite 

P4 2 1k k<  

P5 With increase in ( ),Δi ip I p  decreases exponentially 

P6 ( )ΔI p  and ,H  the entropy, are continuous for 
0 1p≤ ≤  

P7 H  is maximum when all ’sip  are equal, i.e., 

( ) ( )1, , 1 , ,1 .… …nH p p H n n≤  

With these in mind, Pal and Pal (1991) define the gain in 
information from an event as: 

( ) (1 ) ,−Δ = ip
iI p e  

which gives a new measure of entropy as: 

(1 )

1

.−

=

=∑ i

n
p

i
i

H p e  

4.6 Segmentation evaluation examples 

To demonstrate these concepts two examples are given in 
Figures 5 and 6 and the resultant information content is 
given in Table 2. The first example shows that poor choices 
of B� lead to poor segmentation evaluations. This 
demonstrates that the method is dependent on the selection 
of probe functions in the same manner that pattern 
recognition is dependent on feature selection. Notice that 
the elementary sets of Figure 5(a) tend to capture the 
perceptual components of Figure 4(a) better than those in 
Figure 5(b). Consequently, the information content of the 
erosion given in Figure 5(d) is higher (and so worse) than 
that of Figure 5(c). Thus, the same segment can have 
different NSI values depending on the choice of .B� This 
example was given to highlight the need for careful probe 
function selection for a given application. The next example 
(given in Figure 6) demonstrates the ability of the NSI to 
evaluate different segmentations. The segmentation given in 
Figure 6(a) is the same as Figure 4(c) shifted to the right, 
and the segmentation given in Figure 6(c) was created by 
placing boxes of approximately the right size over the horse. 
Both of these segmentations are bad in the sense that they  
do not capture the perceptual component representing the 
smaller horse in the image as well as the segmentation in 
Figure 4(c). This is reflected by the information content 
values given in Table 2 which are higher than that of  
Figure 5(c). 
 

Figure 5 Example of quotient set and perception-based erosion 
of Figure 4(a) using different probe functions,  
(a) Figure 4(b) created using probe functions 

( ) ( ){ }IC NormG,= s sf fφ φB�  and repeated here for 

comparison, (b) quotient set obtained using 

( ){ }avg ,=B� φ sf  (c) perceptual-based erosion using (a) 

as the SE and (d) perceptual-based erosion using (b) as 
the SE 

  
(a) (b) 

  
(c) (d) 

Figure 6 Segmentations of the smaller horse in Figure 4(a) and 
their perception-based erosions, (a) sample 
segmentation, (b) erosion of (a), (c) sample 
segmentation and (d) erosion of (b) 

  
(a) (b) 

  
(c) (d) 

Table 2 Information content of perceptual-based erosion 

Erosion image Information content 

Figure 5(c) 1.6619 

Figure 5(d) 2.5682 

Figure 6(b) 2.1954 

Figure 6(d) 2.0797 
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Figure 7 Mean shift segmentation of Figure 4(a) with 
( )spatial 7=sh  and ( )range 3,7,11,15,19,23=rh  for 

(a), (b), (c), (d), (e) and (f) (see online version for 
colours) 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Figure 8 Results of evaluating the segmentations given in  
Figure 7, (a) NPR index and (b), (c) NSI on a window 
size of 2 × 2 using respectively 

( ) ( ){ }ShannonH NormG,= s sf fφ φB�  and 

( ) ( ){ }PalH NormG,= φ φs sf fB�  

 
(a) 

(a) (b) (c) (d) (e) (f)
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(c) 

Next, further demonstration of the ability of the NSI index 
to evaluate an image segmentation, test ,S  is given by way of 
comparison with the NPR index. But first, the NSI must be 
extended to handle more than one segment. This is easily 
accomplished by letting the NSI of a proposed image 
segmentation be the information content of the worst 
segment in the image, i.e., let the NSI be the value of the 
highest information content resulting from the erosions of 
all the segments in test .S  The idea being that a proposed 
segmentation is only as good as its worst region. Using this 
approach, the NSI was used to evaluate the segmentations 
from an example given in Unnikrishnan et al. (2007) and 
repeated in Figure 7. The results of evaluating the 
segmentations in Figure 7 using both the NPR and the NSI 
index are reported in Figure 8. Notice that all three 
measures give similar evaluations of the segmentations of 
Figure 7, i.e., Figures 7(c)–7(e) are all ranked the highest 
[with Figure 7(e) ranked the best]. Additionally, the NSI 
index gives similar (poor) ratings for both the over and 
under segmentations shown in Figures 7(a) and 7(f), rather 
than treating one case much worse than the other (a rather 
nice result since both are usually equally bad outcomes). 

5 Conclusions 

This article presents an introduction to a form of an 
unsupervised segmentation evaluation measure called the 
NSI. This index is based on a new form of morphology 
inspired by traditional morphology using near set theory to 
incorporate perceptual information. Initial results obtained 
by comparison with the NPR index demonstrate that the 
NSI may be a reasonable measure for unsupervised 
segmentation evaluation. Further, this new method has an 
advantage over other existing unsupervised methods 
because it takes into account perceptual information in the 
form of elementary sets. It is important to note that this 
method is dependent on probe function selection and that 
poor selection results in less perceptually relevant 
information. This is to be expected and is similar to the 
feature extraction problem in pattern recognition. Also of 
note, perceptual information is always presented with 
respect to the probe functions contained in B  just as our 
senses define our perception of the world. For example, our 
ability to view light in the ‘visible spectrum’ rather than 
infra red or microwaves spectrum defines our perception of 
the world just as the selection of probe functions constrains 
the amount of perceptual information available for 
extraction from a set of objects. Future work will consist of 
in-depth comparison testing of the NSI with the NPR to 
further demonstrate the validity of the NSI as an 
unsupervised segmentation evaluation technique. 
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Notes 
1 The quotient set is being relabelled only to be notationally 

consistent with traditional mathematical morphology defined 
in Subsection 3.1. 

2 Sometimes a set A  will be given in terms of a segment of the 
original image [as in Figure 3(c)]. In this case it is necessary 
to rasterise the set by converting from a set with pixel 
granulation to a set with sub-image granulation. 

3 Note that the white area of Figures 3(d) and 3(e) and Figures 
4(d) and 4(e) do not represent an elementary set. This area is 
meant to be a background used to indicate a lack of 
elementary sets that are found in the same location in the 
image of the quotient set. 

4 Here we refer to the objects contained in images as 
components to avoid confusion with objects in the near set 
sense. 


