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Abstract

A word w over alphabet I is non-repetitive if we

. % g
‘cannot write w = abbc; a, b, c € Z , b # ¢. That is, no

subword of w appears twice in a row in w. In 1906, Axel
Thue, the Norwegian'numbe; theorist, showed that
arbitrarily lonﬁ‘non-repetitive words exist on a three
letter alphabet.

Call graph or digraph G versatile if arbitrarily
long non-repetitive words can be walked on G. This work
deals with two questions:

(1) Which graphs are versatile?

(2) Which digraphs are‘versd!i4m£;

Our results concerning versatility of digraphs may be
considered to give informhtion about the structure of
non-repetitive words on finite alphabets.

We attack thesg queﬁtions as follows:

(I) We introduce a.partial ordering of digraphs called

mimicking. We show ‘that if digraph G mimics digraph H,

then if H is versatile, so is G.

(II) We then prdduce two sets of digraphs MIN and MAX,

and show that every digraph of MIN is versatile ( These

digraphs are intended to be minimal in the mimicking

partial'ofder with respect to being versatile. ) and no.

digraph of MAX is versatile. ( The digraphs of MAX are

ii4
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intended to be maximal with respect to not being

versatile. )
R

(III) In a lengthy classification, we show that every
digraph either mimics a digraph of MIN, and hence is
versatile, or "reduces" to some digraph mimicked by a

digraph of MAX, and hence is not versatile.

We conclude that a digraph is versatile exactly when
it. mimics one of the digraphs in the finite set MIN. The
set MIN contains eighty-nine ( 89 ) digraphs, and the set

MAX contains twenty-five ( 25 ) individual digraphs, and

one infinite family of digraphs.
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Chapter 1: Introduction

Definitions and Preliminaries:

A word is a finite sequence of elements :??some
finite set z. We call the set z an alphabet, the elements
of Z letters. The set of all words over I is denoted by
z‘, the set of words of positive length over I by zt. ve
take a naive view of words as strings of letters; thus
the concatenation of two words w and v, written wv, is
simply the string consisting of—the 1etter§ of w followed
by £he letters of v. Say that v is a gsubword of w if we
can write W = uvzj u, v, z € zt. We say v is a prefix
( suffix ) of w if c write w = vz (2v); v, z € z'.
The empty word, denoted €, is the word with no letters in
it. Denote by | w | the length of w, equal to the number
of letters in w.

Let Z, r be alphabets. A substitution h: zf - r‘ is
a function generated by its values on ZI. That is, if w is

a word on T, W = a8,...8., 8, € Z, 1 ¢ 1 ¢ m then

h(w) = h(al)h(az)...h(am).

Define a word of type w, to be a countable sequence .

of letters over some alphabet Z. If h:z‘ - z'.i- some
substitution with b a prefix of h(b) for some b €« I, and

h(b) longer than b, then denote by h"(b) be the word of

-~

oL |
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type w having initial segment hn(b) for every n. This

limit makes sense, as hn(b) will be a prefix of hn+1(b)
for each n.
A word w over alphabet Z is non-repetitive if we

-9'
cannot write w = abbc; a, b, c e z‘, b # ¢. That is, no

subword of w appears twice in a row in w. The term

square-free is also used for such words in the

.
'

literaturg.

For the purpbse;.of this thesis, a graph ( digraph )
G=<V, E> consiéta Of a finite set V of vertices,
together with a set E of unordered ( ordered ) pairs of
vertices. If G is a graph, denote by vert( G ) the set of
vertices of G. If a, b € V, and ( a, b ) € E, thep we say
the edge ab is in G. An edge of the form aa, a €V, is
called a loop. For teghnical reasons to become apparent
later ( See Lemma 3.5 ), we all&u digraphs to contain
loops. However, wé only consider graphs.not contgining
loops.

If G is a graph or digraph we may consider

V = vert( G ) to be an alppabet. We say that the word

{

w e Vt is a walk on G if whenever ab is a two letter
subword of w, then ab is an edge of G. We say that w can
be walked on G, or G allows walk w. A graph or digraph G

is called yversatile if arbitrarily long non-repetitive .



words can be walked on G. This work deals with two
questions:
(1) Which graphs are versatile?

(2) Which digraphs are versatile?

Background: In 1906, Axel Thue, the Norwegian number
theorist, showed that arbitrarily long non-repetitive
words exist on a three letter alphabet. ( See [19]. )
This result has been rediscovered many times, by
Arshon [1], Morse and Hedlund [lél and Hawkins and
ﬁientka [10], fof example. 3

This result of Thue is counter-intuitive, and
interesting for its own sake. It is also useful for the
construction of pathological objects and counterexamples.
An important_;xample of a Qae of Thue's re;;it is in the

solution of the Burnside problem by Novikov and Adjan

[13].

There is a large literatﬁre concerning ’
non-;epetitiyglwords ( See the bibliography of Bean,
Ehrenfeucht and McNulty (3]. ) By Konig’s lemma, the
gxistence of arbitra;iiy long non-repetitive words on a
fihite alphabet is equivalent io the existence of a

non;repetitive word of type w on that alphabet. Shelton

L

b

|
:
|
|




»and Soni [16], [17], [18] investigate the structure of
* the set of non-repetitiye w words on a three letter .
alphabet, showing the set to be perfect with respect to a

natural metric.

Call a word w over alphabet z strongly cube-free if

we cannot write w = abbgc, where a‘ b, c € z‘, p € Z, and
p is the f#rst letter of b. If Z is.a two letter alphabet
and r a three letter alphabet, then a strongly cube-Tree
word of type w over I gives rise to a non-repetitive word
of type w over 7 in a natural way, and vice versa. ( See-
Bragnholtz [5]. ) Fife [9] shows that the strongl?
cube-free gg;ds of tyﬁe w over a two letter alphabet form
a Cantor set under a natural metric. . -

The study of words whicﬁ are non-reﬁetitive or

"y strongly cube-free is generalized in Bean, Ehrenfeucht

and McNulty [3]). Here the question of words avoiding an
arbitrary pattern is considered. A word w € z* avoids the
word v = b b2"'bm if we cannot write w = ah(blbz...bm)c

1
. . s : .
where a, c € Z , and h id a substitution not mapping any

of the b, to the empty word. An algorithm is given to
determine whether, given v, there exists a natural number

n, 80 that there exist'aibitrarily long words avoiding v 2
. ' N

on an n letter aiphabet. If such an n exists, v is said

to be avoidable. -If v is avoidable, it is natural to \ &
] ’ \-—‘/A\ i

b i 4




attempt to bound the n mentioned above. This probleém is
attacked in the paper Baker, McNufty. Taylor [2]. From
[2], the follwing question naturally arises: On which

directed graphs can arbitrarily long non-repetitive words
be walked?

As mentiongd, this question is the subject of the
present thesis;LIn a different light, one may consider
this question to be in the spirit of the investigé:;ons
of Shelton, Soni and Fife: What can we say about the
structure of non-repetitive words?

‘"Let w be a word of type w over alphabet ZI. Baker,
McNulty and Taylor define the transition digraph of w to
be that digraph having vertex'set Irtfgd ag edge aiaj,
a;» 8; € I, exactly when aiag“is a subword of w. It?}s
shown in [2] that if w is a non-repetitive word of tfhg'o
on the éﬁree letter alphabet { a, b, ¢ }, then w must
have a transition digraph with edges ab, ba, ac, ca, bc,
cb. Equivalently, a digraph on vertices a,‘b, c is f-
versatile only if it c;ntains the six edges ab, ac, ba,
be, ca; cb. Our results concerning versatility of
digraphs may thus be considered to give information about
the structure of non-repetitive w;rds on finite

alphabets.

Choffrut and Culik [7] consider the fofldﬁing
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problem: Let Z be a finite alphabet, Wir Woreees Wo words
over Z. Do there exist arbitrarily long words over Z not

including any of the W, as subwords? Thus while Bean,

Ehrenfeucht and McNulty consider the proble;~:} avoiding

patterns, Choffrut and Culik wish to avoid specific
gggig. The present work may be considered a hybrid of
these two approaches: If D is a digraph with vertices Vi
Vor «ey Vo, wWe wiiﬁziffﬁaggfsfgf£o find arbitrarily long
wqrda on (u:;;/y/}.... Ve } avoiding the pattern xx, and
simultaneqj y avoiding the specific words vivj, where

viv‘j is f%y non-edge of D.

Qutline: Having motivated our work in the previous
section, we make some remarks concerning our attack:

(I) We introduce a partial- ordering of digraphs

——ealled.mimicking. We show that if digraph G mimics

digraph H, then if H is vefaatile, s0 is'G.

(II) We then produce_two sets of digraphs MIN and
MAX, and show that.every digraph of MIN is versatile
( These diﬁraphs are intended to be minimal in the
mimicking partial order with respect to being
versatile. ) and every digraph of MAX is not versatile.
( The dizrgszz of MAX are intended io be maximal with
respect to not being versatile. )

(III) In a lengthy classification, we show that



every digraph either mimics a digraﬁh.of MIN, and hence
is versatile, or "reduces" to some digraph mimicked by a
digraph of MAX, and hence is not versatile.

We conclude that a digraph is versatile exactly when
it mimics one of the digraphs in the finite set MIN.

«Step (II) naturally presupposes the construction of
certain non-repetitix; words. From Axel Thue on down,
those wishing to construct squarefree words have used
substitutions. A substitution hu zt - r‘ is called
square-free if whenever w e z' is non-repetitive, so is
h(w). Axel Thue sho;ed that the substitution T}
h: { a; b © }‘ = {an by e )‘ given by

h(a) = abcab '

h(b)

acabchb

h(c) = acbcacb
is squarefree. It follows that h“(a) is a non-repetitive
word of type w on Z. On the other hand, the substitution

g (. a, b, © }‘ alay b )‘ given by

g(a) = ¢
g(b) = bca _a o
g(c) = ba

is not square-free. In ct g(bcb) = bcababca, which

contains the repetitjon abab. Nonetheless, the fact that

g”(b) is non-repégitive was proved by Arshon [1] in the
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1930’s. Crochemore [8], defines a concept of weak

square-freeness for substitutions. i;} Z be an alphabet.

/
Then h: z* -+ z* is weakly square-free if there exist x,

w, where x € Z, w € z*. suchi that hi}) = xw, and h* (x)
is non-repetitive. Althoytﬁ/s is not square-free, g is
weakly square-free. (

Let f: (1, 2, 3 ]\\: z‘ be a aubﬁ}ﬁtution. In the
body ?f this thesis ( see Lemma 2.47/1, we prove that
under certain conditions oi}f, f(guzb)) is
non-repetitive, with g SiVéﬂ\gﬁ above. These conditions
do not force f to be square-free, in fact f(bcb), f(aca)
are explicitly\allowed to contain repetitions._This
result is used to produce non-repetitive words of type w.
Except in one case, all of the many non-repetitive walks
used in this thesis are of the form f(g”(a)) for such an
f. In the other case we generate a non-repetitive word
using weakly squarefree substitutions on a five element
alphabet.

Much work has been done on square-free
substitutions, and cube-free substitutions, which are
defined analogously. References may be found in the
bibliographies of Berstel [4] and Crochemore [8]. We give

an-exalple of a particularly beautiful result of

Karhumaki [11]:

3
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Theorem: Let h: ( a, b }‘ R [ R }‘ be a
substitution such that h(a) begins with an a. Then the
word h“(a) is cube-free if and only if the word hlo(a),is
cube-free.

One last remark is in order, of int;rest to those
following the work of Robertson, Seymour [15]): One might
ask why we consider graphs separately from digraphs,
since a graph G may be considered to be simply a
sy;metric digraph. It turns out that the solutionfof the
graph case of our problem allows us to find a nice
classification scheme for digraphs. Moreover, it follows
from the work of Robertson, Seymour on graph minors that
the graph case will have a nice solution: From the
weaving lemma of chapter 2 one may deduce that if G does
not allow arbitrarily long non-repetitive walks, then
neither does any minor of G. Thus [15] implies that there
is an excluded. minor characterization of those graphs not

allowing arbitrarily long non-repetitive walks. We know

of no generalization of the work of[15] to dixraphsn

Open Problems: (1) It was remarked above that of the
digraphs on three vertices a, b, c, only a didraph
including edxps ab, ba, bec, cb, ca, ac allows arbitrarily

long non-repetitive walks. We can show that if w is a

‘-




non-repetitive word of type @ oun three letters a, b, c,
then w must.contain as subwords all of the words in one
of the following sets ( up to a permutation of letters ):

{ aba, abc, acb, bab, bac, bca, cab, cac, cba, cbec )

x
n

( abc, aca, acb, bac, bca, bcb, cac, cab’ cba, cbc }

==
"

A non-repetitive word of type w all of whose three
letter subwords are in H1 is gu(b) where g is Arshon’s
substitution, given above.

A non-repetitive word of type w all of whose three

letter subwords are in H2 is g(fu(l)) where f,g are given

by
) f(1) = 142
f(2)'= 1435
) f(3) = 143532
f(4) = 1532
£(5) = 1535
g(1) = ac .
¢ g(2) = acb
£(3) = acbe / ’
g(4) = abc
g(5) = abchb .

L.

That z(f“(l)) is non-repetitiﬁe may be proved using
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the methods of Chapter 7 although this fact is ypot used
in this thesis. In general, if w is a non-repetitive word
of type w on n letters, what k-letter subwords must w
contain? ( This question could be phrased in the language
of hypergraphs. )

(2) Call a word w strongly‘hgn;gggg&iglgg if we caﬁnot
write w = abed, a, b, ¢, d € I‘, b »# c.\ a permutation
of b. There exists a strongly non-repetiti word of type
w on a five letter alphabet. Whether such a word exists
on four letters is an open problem. ( See &Bﬁf [14] ) On
which digraphs can arbitrarily long strong}y

\
non-repetitive words be walked? /

/
\ \

-



Chapter 2: Graphs, -
We start this chapter with some definitions
concerning graphs and digraphs.

Let G be a graph ( digraph ) with vertex set V,
*

a, b e V. We say that the word pe ( V\ ( a, b} ) is a
( directed ) path in G from a to b if the word apb is a
walk in G,and no vertex of G appears in p twice. The
graph Pi wHose vertex set is ( 1, 2, ..., 1 } and whose
edges are 12, 23, ..., (ivi, is called the path on i

A graph or digraph G is connected if for every
a, beV, az# b.rthere is either a path in G from a to b,
or a path in G from b to a. A digraph G is s%rogg;x
connected if for every a, b € V, there is a path in G
from a to b and a path in G from b to a.

Let G be a graph ( digraph ) with vertex set V,
a € V, Let pe€ ( V\ { a ) )‘ be a bhgd. p # €. If no

1 ¢
vertex of V appears twice in p, and both ap and pa are

walks in G, then we say that the word ap is a cycle of G

based at a, or simply, a cycle of G. ( Various terms
exist in the literature. Others are circuit, and gimple
cycle. ) A graph C whose vertices are .

{ Cyr Cor wven Cp ) and whose edges are CyCp1 CpCgr «ney

c._ic-, cnc1 is called a cycle.

12
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If G is a graph ( digraph ), a, b € V, then if ab is
an edge of G, say that b_is a neighbour of a ( b _is a
successor of a, a is a predecessor of b ). The degree
' ( indegree, outdegree ) of a is the number of neighbours
( pﬁedecessors, successors ) of a in G.

If Gl’ CZ are graphs ( digraphs ) with vertex sets

Vl’ V2 and edge sets El' Ez then denote by Gl n G2 the
graph with vertex set Vl n V2 and edge set E1 n EZ'
Analogously define'G1 U GZ'

1
In this chapter, we answer the question: Which

graphs are versatile? We.restrict our attention to
connected graphs, since a word v can be walked on a graph
G if and only if v can be walked on a connected comp®fient

of G. We prove the following theorem:

Theorem 2.1: A connected graph G is versatile unless
G is a path on four or fewer vertices.

-

The folldﬁing observation proves useful.

Lemma 2.1 (a) ( Weaving Lemma ): Lef v= BBy s oy, be

a non-repetitive word, By Boyeeey B € S, some alphabet.

Let b bz,...,b be non-repetitive words on alphabet T,

l!
where S and T are disjoint. We pernii some or all of the

r+l

bi to be empty. Then w = blaleaZ"'brarbr+l is a

")
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non-repetitive word.

Proof: Suppose w contains a repetition, say
w = uyyz, ync.‘Then yy contains some aj, for otherwise 'yy
is a subword of one of the bi' contradicting the fact
that the bi are non-repeﬁitive.

Now if p is a word on S U T, denote by pIS the word
formed by deleting from p all the letteq; of T. Thus the
above paragraph remarks that yIS # ¢; however,

a,8,...8 =W |S = ulsylsylsz|S and therefore

172

v = a.a,...a_ contains a repetition, namely y,.¥,~., which
r |s7|s N

is a contradiction.

We thus conclude that w is a non-repetitive word. O
J

Let v be a word of t&pe w on some alphabet Sy

S ='( a a a }. Let G be a graph” ( digréph )

L' Bgr e
including S among its vertex set. Suppose that whenever
ginj &€ S‘is a subword of v there is a path P(ai,;j) in G
from~ni to aj such that no vertex of P(ai,a.) i§ in S. We
say that v _can be walked in G modulo paths. The weaving
lemma will often be applied in the following way:

Lemma 2.1 (b) ( Second Weaving Lemma ): Let v be a
non-repetitive word of type w, G a graph ( digraph ). If
v can be Qalked on G modulo paths, then G is versatile.

Proof: Rick n > 0. Let b ,b,...b be the initiﬁl

—

segment of v of length n. The word w where
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W = b P(b,,b,)byP(by,by)bg.u.b _(P(b _ ,b )b
will be a non-repetiﬁive word by the weaving lemma. By
constfuction. w is a non-repetitive walk on G of length n
or more. Thus G allows arbitrarily long non-repetitive
walks.o

We now commence the proof of Theorem 2.1, proving a
series of lemmas.

Lemma 2.2: Let G be a graph with a vertex v.with
degree(v) > 3, Then G is versatile.

Proof: Let three neighbours of v be a, b, c. Let w
be any non-repetitive word of type w on { a, b, ¢ }. Then
w can be walked’on G modulo paths, with -
P(a,b) = P(bsa) = P(b,c) = P(c,b) = P(c,a) = P(a,c ) = v
( See Figure 2.1 ) Thus, by the second weaving lemma, G
is versatile.OD

Restating Lemma 2.2, any graph which is not
versatile must have the degree of every';ertex being 2 or
less. In the case of connected graphs, we are left with

‘/

paths and cycles.
Lemma 2.3: z ‘o 2 .
Let C €1Sp Cn (m >3 ) be a cycle
Then C is versatile.
Proof: Again we use the second weaving lemma. Here
let v be any non-repetitiv'lword of type w on

{ cyr.cps c4 }e Then v can be walked on O modulo plthl,/j
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where
P(cicz) ~ P(c2c1) — P(czc3) = tP(c3c2) = &
P(cacl) = c4c5...cm
P(clc3) = CpCpm-1'"'C4 '

( See Figure 2.2 ) Thus G is versatile.no

We have seen that every conn;cted graph whiqh is not
a path is versatile. To conclude our examination of
graphs we consider paths. Paths on four or fewer vertices
do not allow arbitrarily long non-repetitive walks. It
suffices to show this for P4,~since P4 contains shorter
paths as subgraphs.

Suppose that P4 allows arbitrarily long
non-repgtitive walks. Then let v be a non-repetitive word

~\

of type ;\Vhich can be walked on P4. We chop v up into
blocks starting #ith k, That is, consider the possible -
subwords of v commencihg with 1, ending with 2 ,and
containing ‘exactly one 1. ( See Figure 2.3 ). Clearly
these are a = 12, b = 1232, c = 123432. However a
moment’s thought show§ tpat block a cannot appea;.in v
since the words aa, ab, ac all contain the repetition aa,
and if v contains block a, then it must contain one of
these lonzéf words.

Thus v must be composed entirely of the two blocks b

and c. However any non-repetitive uprd"hp‘two letters is

i
b
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finite, hence v musf be a finite word. This is a
contradiction. Thus P4 does not allow arbitrarily long
non-repetitive walks.

Definition: ﬂﬁ& S = { Xy» X540 Xz ) T be alphabets
and let h: s* o T* be a substitution. Say that h is
suitable if | |
D | hCxg )] ¢ |h( x; )| + |h( x, )| for
1 ¢i, j) k ¢ 3, i, j, k distinct.

2) For¥1 ¥ 1 ¢ 3'one cannot write h( X ) = uw = wz,
u,w,z € Tt, u,w,z # €.
3)~If W G(S‘ is a non-repetitive word with'l w | = 3 and

/

[u‘ﬁ XoXaXpy X XaXy, then h( w ) is non-repetitive.

.

To show that P. allows arbitrarily long

5

non-repetitive walks, we introduce another lemma for

,

'y .y -
producing new: rron-repetitive words from old. In fact this

lemma will be one of the mdin tools of this thesis.
p

’
& Lemma 2.4 ( Substitution Lemma ): Let. S be the

“,alphabet [ Xy9X5, Xgq ).'Let_i'¢ Sf be .a ‘non-repetitive

word, such thaf xzxskz; xlxsx1 arg not subwords of v. If
h @s suitablg*,tﬂen h(v) is non-repetitive.

Bzggfi Suppose v fulfills the conditions of the lemma and

h is“suitpble. Let v = alaz...am.'For each i, 1’5 i ¢ m,

4

say h( a; ) — e, For the sake of a contradiction,

o
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suppose h (v ) = eey... € = abbc, some a,b,c ¢ T‘.

b # €. ;;;\

Without loss of generality, shortening v if

necessary, write

" - " ’ -
‘// elez...eJ l J = ejej+l"'em-lem = b se (%)
where e, = e'e”, e. = e'e”, e = e'e"
1 171 73 JJ" m m m
" ' ;3 2 ®
el ,ej ’em # €. \§ 7

Since h (v ) is repetitive, m > 3. Otherwise, by

condition 3) of the definition of suitability, e,e e, is
X. XX

1¥3% or xzxaxz, contrary go our‘assumptlona on v. Also

J > 1, otherwise

-

| e, | > | ey | + | es | by line (%) and the fact

that m > 3. ﬁimilarlyh,j < m.

. A 4
o Claim: The two express1ons e 2...e! and g e‘”l e;
"match up " in the nabural way, 1.e. '
= o '.
e = egf

m = 2jJ - 1 and

Byeg BeBi for ¥ = 1 to j-2. > 5 5w

. e! ' <
Proof of Claim: If e‘j ’,en suppose that

-

) : -l ' - " ; ’
| er %4 ej |. Say that el T el i1t ej for some

k < j, and 8 2 eéeﬁ, e; # €. Then h( a8, ) = eke. =
,

eﬁeﬂ k®k+1 k+2...e e- which contains the repetition ek k

—

By condition 3) on h we must haze a, = a - However now

N

ol
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’ " - - - - " ] c.o
e, = ek = eIn = e e = ekek+l"'ejem' Note that

e3 # €, sq‘that condition 2) is contradicted for h(ak),
¢

which commences and ends with eﬂ. .
We get a similar contradiction if | eé | < | e3 |.
¥ ' " - " . .
Thus e = e‘j and el"'ej-l = ej"'em-l' Repeating this
argument we show that P
€1+i = ej+i for i = 1 a0 j-2.
e3 — eI, and 2j - 1 = m, as desired.D

Note that €14i = ej+i implies that Bi4i aj+i'

since h is suitable. From the-claim,

e.e e'e'e’e'e'e"

= el J m 1717 mm

h(alajam)

- ’ " y " ] "
= elelejelejem ’

1 d " ’ . ] -
which repeats elejb Since | a 8.8, | = 3{&one of the ;
.. following cases myst arise: * A

A: al = aj

B: a. = a
J m

a4 al — xl, aj =‘x3, am = xl | )

D: a 2ot

g W Bgy By R Kol W o
In case A, v contains the subword * " o -

alaz...aj_lalaz...aj_l, which is a contradiction , as v

is non-repetitive. Similarly case B cannot occur, as v

would contain a repetition.

Suppose case C occurs. ( Case D is_similar. ) Since

-
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m > 4, and m is odd, m > 5. Therefore J 2 3.

. Now a2 = aj+1. But since v is non-repetitive,

32 # al = x1 and .a. # aj = x3. Thus a, = =X

J+1 2
. Also a, = a)_, so that Xq = aj # aJ._l and

Bj+l 2
J-1

a # a =X

. We conclude that a. =a | = x
m-1 m 1 i =

1 m-1 T2

Therefore a.

J—lajaj+l — xzxsxz, cqptradxcc1ng our

assumptions on v.
The assumption that h( v ) repeats leads to a
contradiction. Therefore h( v ) contains no repetition.O

o

: . 2 ~—
remarks: Several variations have been proved ¢f a lemma

with stronger conditions than the above, and a stronger
conclusion. For example, in Bean, Ehrenfeucht and McNulty

(3], the foljowing lemma is proved.

=
> \i

- ~/j~ »

*
Lemma 2.5: Let Z, 7 be alphabets. Suppose that .

h: 2 = r‘ is a substitution such that

}') If x, vy € £ and h(y) is a ?ubword of hi(x),
then y =‘x}' : ‘
_ : 3’)JI£ W € z‘ is a noh;repetiti;e uord:uith
| w | =3 then h( w ) is non-repetitive.

Then if v « z¥ is non-repetitive, so is h(v).

The proof is essentially that of Lemma 2.4, with

If‘:)
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-suitability. ( We point out that h does ng&_eggt
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condition 1') sufficing to prove the claim. In fact our
claim, with slight renaming, comes from [3]. We have
stated this result of (3] as a lemma, as we will refer to

it later.

Lemma 2.4, in comparison %Eth Lemma 2.5, restricts h
less, and v more. When Z = 8§, g;ndition 3’) necessitates
the checking of h(w) for twelve three letter words w,
whereas condition (3 only requires good behaviour from h .

on ten of these twelve triples.

Next we(éE;w how to produce arbitrarily long words v

on 8, S = { xl, Xp1) Xgq } satisfying the conditions of the
substitution lemma. Consider the qubstitutfon -4
h: 8‘4 S‘ where
h( x, ) = x4 ﬁ -
h( X, ) = X,Xg%y ( Sub 2.1 ) ‘
h( Xq ) =‘x2xi

Clearly h meets conditions 1) and 2) of the definition of

» .
-

condition 1’ above. ) That h also meets condition 3) of

suitability is verified by checking the action of h on
triples of S.

h(xlxle) =‘x3x2x3xlx3

hix XoXg) = XgXoXaX XoX,
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h(xlxaxl)

h(xlxaxz) = x3x2x1x2x3x1

X3X2X1X3

h(xlexz) T XpXaX XaXpXaX,
h(xlexa) T X XaX XaXoX,
Bl XXy} B ZpReX BaXi%s
h(xzxaxz) T XXX XX XX aX,
Rixgx %g) ® BpX,BeXoXeXy
h(x3xlx3) T X X XaXoXy
h(xaxle) T XX XXX Xq
BlX X X)) = X X } Kok Kok
37273 2717273717271
Only h(xzxaxz) contains a repetition: X XpX Xge 7

"Let v be any non-repetitive word on S. Any x3

"appearing internally in h( v ) either comes from h( Xy )

and appears in the context X,X4X,y Or comes from h( Xy )
and appears in the context X XqXg e Thus the words X XqX
and x2x3x2 are not subwords of h( v ).

Now suppose v & St has no repetition and doesn’t
contain xlxax1 or x2x3x2 as subwords. By the substitution
lemma, h(v) contains no repetition. By our last
observation, h(v)'containa neither xl'xaxl nor xzxﬂxz.Thus
by induction hn( X ) has no repetitions, and does not
contain *lxsxl o; *2x3x2‘ We therefore see that the word

hn( Xy ) fulfilis the subatitution lemma’s conditions on

v, and can be ngde arbitrarily long.

|
i

|

)
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We are now ready to show that P5 allows arbitrarily

long non-repetitive walks. Consider the following

subgtitution.

g: 8‘4 Tt

g( X4 )

g( Xq )
Clearly g( v )
Figure 2.4 )

Further,

g€ is suitable.

12345432 ' J
123432345432123454323432 ( Sub 2.%\9
1234323454323432

is a walk on P5 whenever v ¢ S”. ( See

>

The only condition difficult

to check is condition 3). One must check these words for

non-repetitiveness:

B(x;xpx,)
B(x Xox3q)
*
“
z(xlxaxl)

l(xlxsxz)

Bxpx,X5)

= 1234543212343234543212345432343212345432

= 12345432123432345432123454323432~

1234323454323432

12345432123432345432343212345432

123454321234323454323432123432345432-

123454323432 “,

= 12343234543212345432343212345432~

123432345432123454323432

l(xlexs) F 12343234543212345432343212345432-

\

£ (x,%5%,)

1234323454323432
= 123432345432123454323432-
123432345432343212345432
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B(X,XaX,) = 123432345432123454323432-
1234323454323432123432345432123454323455
8(x3x1x2) = 12343234&5{%;43212345432123432345432-
123454323432
l(xaxlxa) = 1234323454323432123454321234323454323432
B(XgXpX,) = h 34323454323432123432345432-
.12625432343212345432
g(xaxzxa) = 1234323454323432123432345432~
1234543234321234§£§454323432
As an éxample, we show that w = k(xlxle) is
non-repetitive. Suppose not. Then w must contain a
repetition vv. Being a repetition, vv contains the symbol
1 exactly four, two or no times. We can rule out vv

containing no 1'’s, since then vv would be entirely

containsd in one of z(xl), z(xz). 8(x3), which can each

be checked to be non-repetitive.

If vv contains exactly. four 1’'s, then the first and

third 1's of w are " matched " by vv:

‘1211511112343234543112115113343212345432 SR

-gouevef, ni indidated in'thé.above scﬂene, this cann

happén, as the subwords of w.comiencinz at the first a\d
third 1’s don’t agree for long enough. ( The extent of \
théir az;;elent is underlined. )

\\ Supp;seﬁyv contains Fhen exactly two 1’s. If the

—_— . » - *
- \ .
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first 1 of w is contained }q vv, it ‘must be matched with

the second 1 of w:
iggi5432i1213234543212345432343212345432

We see that this is impossible.

Suppose that vv matches the second and third 1's of

1234543212343234543212345432343212345432
Again we see that this is impossible; the underlined
"zones" of agreement for these two 1's do not meet.

The second 1 of w cannét be matcl\? with the fqurth

1, since then vv would also éontain the third 1. However

then vv would._contain all four 1’s, which is impossible,

as mentioned.

The final possibility is that the third and fouréhj
1’s of w should match. However, we note that wl is a

palindrome. Since the second and third 1’s could not
match, neither can the third and fourth.
"

By arguments of this type, all the listed words

- - ~

‘except for g(xyXq%,) can be shown to be non-repetitive, . .

Alternatively, g can be shown to be suitable by invoking

the Long/Short Lemma of Chapter 7.

’ ‘ L
As g js suitable, g( h"( X, ) ) gives an arbitrarily

. #

-

-
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long non-repetitive walk on P5 by choosing n aé\lgrge as

desired. Thus P5 is versatile. Since any path on more

S—

than five vertices contains P5 as a subgraph, such paths

are also veraati{e. We%have thus proved Theorem 2.5.

Versatility of MIN.1 - MIN.4: Since we have the

substitutions h and g handf, this is a convenient point
'in the thesis at which to show that MIN.1 - MIN.4 are
versatile digraphs. Let v = h“(xz), W = g(hw(xz)).
Vo Recall from Chapter 1 the concept of a transition
“ digraph: given. a word u of type w over a finite alphabet
Z, the transition dizraph of u has as vertices those

letters of I appearing in u, and a dizected edge from

letter x to letter y exactly when xy is a subword of u.

Thus MIN.1 is isomorphic to the @ransition'digraph of v,

.

and MIN.3 is precisely the trandition ‘digraph of w. It

an&,MIN.S-aré versatj&e;digr&bhs.
‘ & ¥ -“,"':r‘ }':.\, - - v . -

follows that MIN.1

&

Lia . * . v v

“. . . ... As we remarked earlier, v does not contain subwords .

x2x3x2 or xlxaxl. Whenever x3 occurs in v it is either in

1

w arising ‘rbn v by replacing Xq by X, whenever X, occurs

the context XpXgXy OF X;XpX,. Let v’ be the word of type

in context.g1§3xz. Ciear{y v’ uil} bg'a non-repetitive
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word of type w. One checks that MIN.2 is isomorphic to
the transition digraph of v’, and thus is versatile.
Similarly, one checks that w does not cont%in

subwords 232 or 434. Whenever 3 occurs in w it is either
in the context 234 or 432. Let w' be the word of type w'
arising from w by’replacing 3 b& 3’ whenever 3 occurs %n
context 432. Again w} will be a non-repetitive word of
type w. One checks that MIN.4 is the transition digraph

of w', and thus is versatile.
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Chapter 3: Digraph Classification

In this chapter we ask the—}ollowing question: Which

digraphs are versatile? In analogy to chapter 2, we are
only interested in strongly conneéted digraphs.

Lemma 3.1: Let G be a digraph. Then G is versatile
if apd only if one of G’s strongly connected components
is versatile. i

\ .

Proof: Clearly if a component 'of G is versatile, so
is G. Suppose that G is versatile. Let v be a
non-repetitive word of type w which can be walked on G.

We show that whenever x and y are vertices in
different components of G then a final segment of v can
be walked in one of G \ { x } or G \ ( y }. It will
follow by induction on the size of G that a
non-repetitive walk of type w exists in one of Gis
components.

A

Suppose then that x and// are vertices of G and
there is no directed xy path iﬁ G. If v contaihs no x,

then v can be walked in G \ ( x )} and we are done. If v

\
contains an x, then a final segment v’ of v contains no
) .

vy, and v’ can be walked in G \ {( y }.O

A strongly connectedwdfzraph can be written'aé a
union of cycles. In the following lemma we relate the

intersbction of these cycles to the existence of

32

-
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non-repetitive walks. \\\ F

N\

Lemma 3.2 | Intggsecﬁégn Lemma ): Let X, Y be

N

directed cycles in the digraph G so that vert(X) n
vert(Y) # ¢. Then either

1) X n Y is connected
or 2) XU Y is versatile.

" Proof: In fact if 1) does not hold, then X U Y

-

"contains" one of the versatile digraphe/MIN 1 or MIN 2,
in a sense to be made precise later. We show that -~1) -
2). First note that X ( similarly Y ) gives a circular

order to the vertices of vert(X) n vert(Y).

S

Case A: The circular orders given to vert(X) n

i

vert(Y) by X and Y are different.

In this case there are vertices xl, x2, x3 of X i Y

occurring in the order X11r X1 Xgq in the cycletx, and in \'

the order Xy xa, x2 in the cycle Y. Now we use the
Second Weaving Lemma, Lemma 2.1(b). As in the last part
of Chapter 2, let v be h:4x2). The Second Weaving Lemma
requires us to walk v on X N Y modulo peths. We let the
paths P(’fp, Xg ) P{ Xp1 Xq )s P Xqy X4 ) be arcs in
cycle X. We require that none of these paths contain Xy
Xy OF Xgq. However,'this is fulfilled because of the
assumed circular order of these vertices in X. For

example, the vertex Xq cannot be on the arc of X between

s el

ba



P( x

Xy and Xg e The required paths P(‘xl, Xq ), P( Xa1 X, ) s
20 X4 ) are chosen in Y. Then v can be walked on X N
Y modulo these paths, and by the Second Weaving Lemma, X

N Y is versatile.

’

Case B: Thé circular orders on vert(X) n vert(Y)
given by X and Y are the same. Suppose that X N Y is not
connetted. Them choose vertices X1 X, which are in
different components of X Nn Y. Let Px( X1 X, ) be the
X X, path in X, PY( X110 Xg ) the X X path in Y. Since
these two paths are not equal, we have

vert ( PX( X1 Xy ) ) # vert( PY( X1 Xg ) ).

Let X,
Using similar definitions, let Xq € vert ( PX( Xor X ) )

¢ vert( Pyl x;, x, ) ) @ vert( Pol x4y X, ) ).

® vert( PY( Xo1 Xy ) ). %

We again wish to apply the Second Weaving Lemma,

‘Lemma 2.1(b), with 8 = { X0 Xg1 Xg4 X, }. Instead of v,

we use v’, the word arising from v by replacing Xq by Xy
wperever X5 occurs in context X XaXye

As remarked at the end of Chapter 2 v’ is
non-repetitive. Also the only two letter subwords of v’

8

Bre X;X,, XoX;» X Xz X,Xg, x4x2{ XaX ) We must now show

that we can walk v’ in X U Y modulo paths. There exists

an Xx,X, path in X U Y not through Xg0 since X, is not on

both Px( X110 Xg ) and PY( X1 X, ). Also Xq is not on

A

34



PX( X1 X, ) or PY( X1 Xy ) beéauée X4 is between X,

and X, on one of X and Y. We may thus choose one of

.Px( X Xo ) or PY( xl.'xz ) to serve as a path

ll
P( Xy x2) having no vertex in S.

Preparjng to use the second weaving lemma, with
S = ¢ X1 Xgu Xgy Xy ), we have shown that the required

path P( x is between x

1’ 4 1
and X, on one of X and Y, there is an X1%y4 path in X U Y

2 Again Xq is not on this path, for

x2 )'exists. Further,, since x

not through x

otherwise x3 is between xl and x4. hence xl and x2.

Arguing similarly, the existence of paths P( x X

1’ 2 )'

P( x X, )s P x Xa )i B xz, d ), P( x X

1’ *4 4' X2 2' X1 1o
P( Xqy X4 ) may be shown. We may thus walk v’ on X U Y

modulo paths and therefore X U Y is versatile.

We have shown that certain Qizraphs are versatile.
We use this intersection lemma to delineate the digraphs
requiring furthq; investigation.

Lemma 3.3 ( Classification Lemma ): Let G be a
stronglw connected digraph . Then G is of one of the
following types:

(1) vert( G ) = vert( X ) for some directed cycle X
of G. In this case, say G is a one hump dizraph;

(2) G is not of type ( 1 ), “but vert( G ) =

35
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vert ( X U Y ) where X and Y are directed cycles, and

X N Y is connected and non-empty. In this case, say G is

a two hump digraph.

(3) G is not of types ( 1 ) or ( 2 ), but
vert( G ) = vert( X U Yu Z ) where X, Y, Z are directed
cyclea, XNYand YN Z are connected and non-empty, and

Xn 2 ¢. In this case, say G is a three hump digraph.

(4) G is versatile.

Remark: In fact, unless G falls under one of cases
(1), (2) or (3),'0 "contains", in a sense to be made
precise later, one of the versatile digraphs MIN.1, MIN.2
\or MIN.3.

Proof: If G.is versatile, then G falls under case
(4) and we are finished. Thus suppose that G is not
versatile. Since G is strongly connected, write

vert( G ) = Ui - vert( Ci ) where the Ci are directed

=1
cycles of G, and for each j, 2 ¢ j ¢ m,

there exists i < j such that Cj n Ci 2 o,
Do this so that m is as small as possible.

If m = 1, then G is of type (1) and we are done. If
m = 2 then G is of type (2), for by the intersection
lepma, since G is not versatile, C1 n 02 must be

connected.

If m = 3, C1 n C2 # ¢. Suppose without loss of
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generality that C2 n C3 # ¢. Otherwise 02 n C3 = ¢ so

that C3 n C1 # ¢, and we interchange the roles of Cl and

C2.

Because G.is not versatile, by the intersection

lemma, C1 n C2, C2 n C3 are connected. It remains to show
that 03 n C1 = ¢. Suppose not. |
E .
Let X, € vert ( Cl ) \ vert( C2 U C3 ). Such an x1
exists, for otherwise we could write vert( G ) = vert( C

2
U C3 ) where C2 n C3 is non-empty. This contradicts the

minimality of m.

Similarly we can choose x, & vert( C2 Y \

2
oo d t( C t( C, U C
vert( 1 U 3‘1 an x3 e vert( 3 ) \ vert( 2 U 1 Yo
Now we use the second weaving lemma. Let S8 = { x

1!
Xo1 Xgq }, and v = hu(xz) as bgfore. The required path
P( X1 X, ) follows C1 from Xy to C1 n CZ’ then C2 to Xge
We see that Xq is not on P( x, y ) because X, @ Cl U Qz.
Similarly we can find P( Xo1 X4 }s PL{ Xy X4 ), P{ Xa1
Xg s BY Xqy X4 ) s PH X1r Xgq ). We can walk v on G modulo
the P( xi,-xj ), contradicting our assumption that G is
not versatile. Here G is cognate, in some sense, to the
triangle, MIN.1.

We conclude that if m = 3, then Cl n C3 = ¢, and G
is a three hump digraph

If m > 4, we must get a contradiction. We will
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consider the cycles C1 C2, CS' C4. As in the previous
¢ ’

case, we may assume Cl n 02 * 9, C2 n C3 # ¢, and C3 n Cl

= ¢,
A4
Cagse A: C, n C, » ¢.
Then pick X, vert ( C4 ) \ vert ( Cl U C2 ) C3 ). We can
do this by minimality of m. Pick X, € vert ( C3 )\
vert ( C1 U C2 U C4 | 8 Such a X, exists, otherwise m could
be reduced by discarding CS' Again, pick Xq € vert( C1 )

\ vert( C, UC, uULC

2 3 4 )

Again use the second weaving lemma with S = ( X0
)
x2, x3 ) and v = h (xz). We can let P( xl, x2 ) be a path
from Xy through C4 to C4 n Cz, through 02 to 02 n C3.
through C3 to Xg e Clearly Xq is not on this path. .
Similarly we choose P( X1 Xg ), P Xo1 X4 ),
X

P( x ), P( x

2l. x3 )! 3! 1 3’ xz )‘

By the second weaving lempa, G is versatile, which

is a contradiction. ( This case is cognate to the

undirected graph case where G has a vertex v of degree 3

or greater. Here, 02 plays the role of vertex v. )
Mc4ncz=o.

Suppose without loss of generality that C4 N C3 2 P,

Otherwise interchange the roles of C1 and Ca. Now pick a

vertex 1, with 1 € vert( Cl ) \ vert( C2 U C3 U C4 ).

Such a vertex exists because m is minimal. Pick vertex
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2 € vert( C1 n 02 ), vertex 3 € vert( C2 n C3 ), vertex
4 e vert(_C3 n C4 ), and vertex 5 € vert( C4 ,
vert( C1 U C2 U C3 ). Let S = (1, 2, 3, 4, 5 ), and walk

w = g( h“( Xy ) ) on G modulo paths, where h, g are
substitutions 2.1 and 2.2 from chapter 2.
The two letter subwords of v are 12, 23, 34, 45, 54,

43, 32, 21. Choose the paths P( 1, 2 ), P( 2, 1 ) in Cl'

Since Cl n C3 = ¢, 3 and 4 are not 6n P(1, 2 ) or

P( 2, 1 ). Also 5 ¢ Cl so that 5 is not on P( 1, 2 ) or
P( 2, 1 ). LetP( 2, 3 ) and P( 3, 2 ) be paths in 02'
These paths avoid 1 and 2 which are not on Cz, and 4 and

5 which are on C ag C, N C, = ¥, ghoose Pl 3, 4 ),

4’ 2 4

P( 4, 3 ) in C, and P( 4, 5 ), P( 5, 4 ) in C4. By

3
arguments symmetrical to those used with the first four
paths, these last four paths satisfy the conditions of
the second weaving lemma. Thus G is versatile, which is a

contradiction. The reader will perceive that we treat G

as though it were a five element path. ( MIN.3 ) 0O

The intersection and classification lemmas can be
invoked to show that certain classes of digraphs are
versatile. To show that an individual digraph is not
versatile, it suffices to exhaust the non-repetitive

walks on that particular digraph. Next, we provide ways
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»
to show that classes of digraphs do not allow arbitrarily

long non-repetitive walks.

Lemma 3.4 ( Compressible Paths Lemma ): Let

a,8,...8 , N > 2, be a directed path in a digraph G with

1 ) = 1, R

degree ( ai ) =2, 1i = 2 to n-1,

outdegree( a

indegree( a, ) = 1. v
Then G is versatile if and only if.G’ is, where G’ is
obtained from G by removing 8oy Bayeeey an, and adding an

edge in G'from a, to every successor of a .

1
( i. e. We identify the vertices of the path. )

Proof: The result will follow by induction if we
prove the lemma for n = 2. Suppose then, that n = 2.

Clearly if G’ is versatile then G is, by the weaving
lemma.

Suppose G is versatile. Let w be any non-repetitive

walk in G with the sole restriction that w ﬁoes not start

with a, or end with a,. Consider w' = "lvert( G I\ ( a, )?

the word obtained from w by deleting all occurrences of

a,. Clearly w’' will be a walk on G’. If we can show that

w’ is non-repetitive, we shall be done, for

| w' | 2| w | / 2, which can be made arbitrarily large.
If v is any word on vert( G ) \ { a, }, then let

p(v) be the word obtained from v by replacing each

occurrence of a, in v by alaz..Then'clearly. P(w’) = w.
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Now suppose for tge sake of contradiction that w’' is
repetitive, say that w’ = abbc for some

a, b, c € vert( G ) \ { a, }, b.# e¢. But then

p(w’) = p(a)p(h)p(b)p(c), and w contains a repetition,
which is a contradiction.o

Definition: Let G be a digraph so that all the

vertices of G lie on a directed path P of G. Let ij be a

directed edge of G not on P. If j precedes i in P, then

the edge ij is a back edge ( with respect to P ).
Otherwise, the edge ij is a forward edge ( with respect
to P ). |

Definition: Let G be a digraph with all ‘its vertices
on a directed path P, so that vert( G ).is ordered. Let
ij be a back edge of G. We gsay that edge ij is useful if
one of the following cases arises:

(i) A forwﬁid edge k1l of G has a vertex between j
and i; jJ ¢ 1 ¢ i or-j ¢ k ¢< i ( or both ).

(ii) There are two back edﬁes of G, i’j' and 1"j",
such that |
JL " ¢ J" it X1 £ 1, but not Both §J = 2 'and 1 =
i. We say that i'j’ and i"j" form an M under ij.

(iii) A back edge kl of G intersects ij; that is,

I € J gk <iorJ <1l ¢i <k Vo say that k- and. 13

form an M.

s
2
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Otherwisé say that ij is useless.

Lemma 3.5 ( M lemma ): Let G be a digraph with all
its vertices on a directed path P. Let ij be a useless
edge of G. Then G is versatile if and only if G \ ij is,
where G \ ij is the graph obtained from G by removing the
edge 13

Proof: First note that removing an edge from G never
makes another edge useful.

Next let Q be the set of back edges of G with
partial order > : i"j" o i'j’ if 3" ¢ j' < i’ ¢ i", viz.
the ends of the smaller edge are between those of the
larger. |

It suffices to prove the lemma in the case that i}
is minim;l with respect to this order. Suppose that the
lemma has been proved in this case and kl is any useless
edge‘of G. Let the set of useless edges of G less than or
equal to kl be S = ({ iljl, izjzA 2§ injn' kl }. Then
G\ S is veri.;ile if and only if G is; we simply remove
the edges of S ffog G one at a time, at each step
removing a mininall;dze. To get G \ kl, we add the edges

of S \ [ kl [,eo‘é‘\ S, starting with maximals.

Suppose en that ij is a useless edge of G, minimal

in the order gliven. Let v b“EWnon-repetitive word of type
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w walkable on G. If ij appears.only finitely often in v,
then a final segment of v can be walked oﬁ'G \ i), and we
are doqe. Thus aséume that ij appears infinifely often as
a subword in v. We can then find arbitrarily long
subwords w of v such that w has i as a suffix.4

Claim: Any long enough.subword ;-of v having i as a
suffix must have suffix j(j+l)(j+2)...(i-l)i. ( Here j+1
is the successpr of j on P etc. ) .

» Proof of éi;im: The indegrge-of i is 1: Any forward
edge ending at i satisfies (i) of the definition of
useful edges, making ij useful. Any back edgé ending at i
satigfies (iii) of the definition, making ij useful.

Thus w ends in (i-1)i.

Now supbose that long enough w ending in i must end
in

~(i-k)(i-k+1)...(i-1D)i, j < i-k N & I

We show that w ends in (i-k-1)(i-k)...(i-1)i.

Suppbse not. Then some edge e = 1l(i-k), 1 # i-k-1
exists in G, and w ends in 1(i-k)...i. If 1 < i-k, then e
is a forward edge satisfying (i) of the definition of
useful edges, a contradiction.

Thus we must assume that e is a back edge. Because
of (iii) of the definition of useful edges, we must have
L& 1 Siﬁce e is not a useless edge,

by nimality
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of ij, there are two possibilities:
I) There is an M under e. Such an M is also under
ij, a contradiction), as per (ii) of the definition of
useful e&ges. |
II) Some edge f = rs forms an M with e where
s ¢ i-k ¢ r <1 - ‘ s

or i-k ¢ 8 ¢ 1 < r.

Because of (ii), (iii) of the definition of useful edgés,

s < i-k ¢ r <1 =1

we insist that j
or = J=i-k <8 ¢ 1 <r = 1i.
However by assumption, j < i-k, so we must have

J =8 (< i-k ¢ r <<l = i.i
Thus w ends in l(irk)...i-= i(i-k)i. But then, if w is
long enough, our inductiop h&pothesis (¥ gsays that w ends

in (i-k)...i(i-k)...i, and v contains a repetition, which

is a contradiction.

Thus w ends in (i-k-1)(i-k)...i. By induttion, w
ends in j(Jj+1)...(i-1)i.o
A sedond claim has a similar proof.
LClaim: Any long enough subword = of v having j as a
prefix must have prefix j(j+1)(j+2)...(i-1)i.
However v contains 1ij infihitely often, so that we
can find a long subword wijz of v with w =

W'i(i+1)(j+2)...(i-1)i, 2 = j(j+1)(j+2)...(i-1)iz’'. But



then v contains the repetitive subword

W I(J+1)(j+2) ... (i-1)15(jg+1)(j+2).

contradiction.

45

..(i"l)iZ', a

We conclude that v contains ij only

finitely often, and thus G \ ij is versatile if and only
. .

if"6 is.o

.

. W

Clearly the existence of a loop in a digraph does

not help to make it versatile. We méy therefore modify

Lemma 3.4 slightly:

, Lemma 3.6 ( Compressible Paths Lemma ): Let

a.a
outdegree( a
degree ( a, )

indegree( an

1

= &, 3 =

) = 1.

/ 3
...a_ be a directed path in a digraph G with
172 n

Then G is versatile if and only if G’ is, where G’ s

obtained from G by removing a2. Bayeeey B

edge in G' from a

ai.

l‘to every successor of-an

and adding an

other than'

We.gay that digraph G reduces to digraph H ( H is a

reduction of G )

applications of the compressible paths lemma and removal

if H is obtained from G by repeated

of loops and useless edges. Thus if G reduces to H, G is

versatile if and only if H is versatile.
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Thé gurpose of this thesis is to characterize
versatile digraphs. We make this characterization by
producing two sets of digraphs, MIN ( shown iq'

Appendix 1 ) and MAX ( shown in Appendix 2 ). In Chapters
("7 and 8 w.e .show that tt;e.digraphs of MIN are versatile.
In'éhapter 9, we show that the digréphs of MAX are not
versatile. In Chapter 4, Chapter 5 and Chapter 6, the
heart of the th;sis, we give a case by case breakdﬁwn of

all digraphs to show that every digraph either can be

re uced to some digrapﬁ "contained” in a digraph of MAX,

dﬂhfnce is non-versatile, or eise "contains" some
digraﬁh of MIN, and_gence\is vergatileh The intersection
lemma, the classifidation lémmg, the M lemma, and.thé
definitionﬁ of Qselesé edges, forward edges and back
edges will be used tb give this case breakdown of
digraphs. The next section of this chapter introduces the
concept of g;mickigg,-by which w; make precise what it
means for a digraph G to, "contain” a digraph H .

| T Definition: Let H, G be dig;aphs so that there is an
injection m: vert H —> vert G, such that whéheve;.ij is
an edge of H, then there is a path in G \ m(vert H) from
m(i) to m(j). We say that G imitates H. .

We can put this another way: We fi¥ a labell%ng of

G. Whenever v is a walk on H}then v be walked
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modulo paths with respectxto this labelling. It follows
that if G imitates H, then if H is versatile, so is G.

Egamgle: The graph of Figure 3.1 imitates the -
triangle with the given labelling.

Not every versatile digraph imitates Ps or the
triangle. ( Otherwise we would bé finished, by
Chapter 2. ) The digraph G of Figure 3.2 is a
counterexample. This graph is indeed versatilg. because
the followiqg substitution is suitable. (“_\
g: X, > 1232 '
—> 123454

X, —> 123456

This is easy to check, or refer to the Different Endings
Lemma of.Chapter 7. However, an argument could be givep‘

to show that G can imitate neither the triangle nor the

five element path.

‘.i If G is a digraph, then GR. the reverse of G, is the

digraph with the same vertex set as G, and a directed o=
edge ij eXactly when ji is a digected edge of G. Clearly

GR is vernsatile if and only if G is. To reduce the size

of MIN, wé have sought to include at most one of G and GR

for any digraph G. Let us extend the idea of initatioh to

take advantage of this:

Definition: Let H, G be digraphs. Say that G ni.ésg~
: : Py

. i
» -
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H if G imitates at least one of H, HR.

Now that we have introduced the concept of

mimicking, we remark that the proofs of Lemmas 3.2 and
3.3 prove the following stronger results:

Lemma 3.2' ( Intersection Lemma ): Let X, Y be -

directed cycles in the digraph G so that vert(X) n
vert(Y) # ¢. Then either A
1) XN Y is connected

or 2) XU Y mimics one of MIN.1 or MIN.2, and hence is

versatile

Lemma 3.3’ ( Classification Lemma ): Let G be a

strongly connected digraph . Then G is of one of the

following types:

(1) vert(.G ) = vert( X ) for some directed cycle X
of G. In-this case, say G is a one hump digraph.

(2) G is hot of type ( 1 ), but vert( G ) =
vert ( X U Y ) where X and Y are directed cycles, and
X N Y ig connected and non-empty. In this case;, say G is
a two hump digraph.

(3) G is not of types ( 1 ) or ( 2 ), but
vert( G ) = vert( XU YU Z ) where X, Y, Z are directed

cycles, X n Y and Y n Z are connected and non-empty, and




7-

e

X h”i): ¢.(#n this case, Say G 'is a three hump digraph.
- A
(4) G mimics one of MIN.1, MIN.2 or MIN.3, and

therefore is versatile.

v N
|
"

Weé now have the tools necessary to statge and prove
our main result. The main theorem of this work is proved
in three pieces, ap?earing.in Chapter 4, Chapter 5 and

J
Chapter 6,.respectively. -

Theorem 3.8: Let G be a three hump digraph. Either G
mimics a graph H qhere H is in MIN, or a reduction of G
is mimicked by some digraph K, where K is in MAX.

El

Theorem 3.9: Let G be a two hump digraph. Either G

mimics a graph H where H is in MIN, or a reduction of G

is mimf@ked by some digraph K, where K is in MAX,

Theorem 3.10: Let G be a one hump digraph. Either G

mimics a graph H where H is in MIN, or a reduction of G

is mimicked by some digraph K, where K is in MAX.

The Main Theorem ( Theorem 3.11 ): Let G be a

digraph. Either G mimics a graph H where H is in MIN, or

a reduction of G is mimicked by some digraph K, where K



is in MAX.

Co}ol;arx 3.12: Let G be any digraph. Either G is

non-versatile, or else G mimics a graph H in MIN.

/ o A

51
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Chapter 4: Three Hump Digraphs

In this chapter we prove Theorem 3.8.
Theorem 3.8: Let G be a three hump digraph. Either G
mimics a graph H where H is in MIN, or a reduction of G
is mimicked by some digraph K, where K is in MAX.

We begin by proving a refinement of the
classification lemma.

Lemma 4.1 ( Refining the Classification Lemma ): Let
G be a three hump digraph . Then either

(1) vert( G ) = vert ( XU YU Z ) where X, Y, Z are
cycles of G,

XNY, YN Z are connected and non-empty, X N Z =+¢,

hand

} Y\ (XU Z ) is connected.

or (2) G is versatile. In fact G mimics MIN.4.

Proof: Suppose that Y \ ( XU Z ) is not connected.
Then choose vertices 1 € X \ Y, 2 e XN Y, 4 € Yn Z and
5 €« Z \ Y. Pick two vértices 3, 3' from different ‘
components of Y \ ( XU Z ). Without loss of generality
wé may asaumg that vertices 2, 3, 3', 4 appear in
cyclical order 2, 3, 4, 3’ in Y. ( Recall that X n Y, Z n
Y are connected. ) With this labelling, G mimics MIN.4.
( SeebFigyre 4.1. )o

This refinement of the classification lemma allows us to

52
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introduce a certain structure to three hump digraphs.

Definition: Let G be a three hump digraph. We say
that G has a skeleton if

(1) We can write vert( G ) = vert( P ) where P is a
directed Hamiltonian path in G. Path P gives an order to
the vertices of G.

(2) With respect to this order, G has a: least three
additional edges a8, b2b1' c,cy where a, < b1 ¢ By, < ¢y
< b2 < Cos

vertex.

al is the initial vertex of P, Cy the final

We call the digraph made up of P together with the
edges ara,, b2bl’ CoCy the skeleton of G. ( See Fig.

4.2.) Other edges of G are called extra-skeletal edges.

Lemma 4.2 ( The Skeleton ): Let G be a three hump

digraph which does not mimic MIN.4. Then G has a
skeleton.

Proof: We may assume by Lemma 4.1 that Y \ ( XU 2 )
is a directed path. Let m be the source of this directed
pﬁth and M the sink. Let a, be the predecessor of m in Y.
Either a, € X or a, € Z, but not'both. Suppose without
loss of generality ( up to renaming ) that a, € X, Let a,

be the successor of az in X.
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Let c, be the successor of M in Y. Then c, € 2.

Otherwise c, € X, and Y is the union of two directed

'ﬁaths: the segment of Y from m through M, and the segment

of X from ¢, through a,- ( Recall that Y n X is

1
connected.) But then Y n Z = ¢, since X n Z = ¢ and

(Y\(XUZ))N2Z=¢. This is a contradiction. Thus

indeed c, € Z. Let the predecessor of cy in Z be Cye

Now X N Y is a directed path with a, as sink. Let bl
be the source. Let b2 be the sink of the directed path

YN Z , which has ¢, as source. ( See Figure 4.3.3)

1
Now X is the cycle al———az, Y\N(XuUZ ) is the

path m—M, and Z is the cycle ;T Cy- We may therefore
let P = al———azm———ﬁcl———cz. Clearly we have vert( G ) =
vert( P ),

a, < b1 < a, < ¢y < b2 < Co»

al is the initial vertex of P, c2 the final vertex

of P.

We show that 8, < bl’ a, < Cyr b2 < Cy»

If a, = b1 , then X =*‘a1——-—a2 = bl———a2 cXnNnY, so
that X ¢ Y. Then vert( G ) = vert ( YU Z ), a
contradiction.

Similarly b2 # Cye
# C

Finally, as X N Z = ¢.

e 1°
The edges ay8,1 C,oCy exist by definition. The edge
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b,.b, exists because Y is a cycléxOl”

21
Proof of Theorem 3.8: We assume that G has a

2 r~
skeleton, since otherwise, by Lemma 4.2';bove, G mimics
v

MIN.4. Also, ﬁe may assume that G has no useless edges,

L

as such edges may be removed without affecting whether G
is versatile or not. The proof of the theorem involves a
lengthy enumeration of cases. To make this case bréakdown
we refer to the skeleton of G ( Figure 4.2 ). Let the
extra-ske}etal edges of G be 1,009 12J2,..., 1me. We

.

make caseé based on m. “

L4

To reduce work, we often invoke symmetry. Now GR,

the reverse of G is a three hymp digraph. Again,
vert( GR ) = vént( PR) where PR is the reverse of P.

: ’ ’ ’ ’ ¥ o
Renaming a, as c,, a, as C,, b1 as b2, b2 as bl' ¢, és a2
and c, as ai. we see that GR is a three hump digraph with

skeleton PR u { cz'cl’, bz’bl', athl>.f. This symmetry

under reversal reduces the number of required cases. For
example, suppose G has an edge iljl with il > b2. Then,
renaming il as jl' and jl as"il', the reversal of G has
Jlf <hpi and will later fall under our case Al. Keeping
this ;se of symmetry in mind, we procede to our case
division.

m=0: If G is its own skeleton then a reduction of

G can be mimicked on MAX.1 and we are done. ( See Figure



v
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to the paths in G

-

from al

2y

to

from to

82
from
1 to bz
b2 to Cy-

from c

and from

-5 We apply the Compressible Paths Lemma,

the successor of'a2 to the predecessor of c¢

vy

the predecessor in P of bl‘

1

Lemma 3.6,

The result is isomorphic to a graph in one of Figure 4.4

or Figure 4.5, depending on whether there is a vertex

between a, and ¢y in G. These graphs are nimicked/by
4

MAX.l1 with the given labellings. ; t

m = 1: Depending on il’rjl we have several subcases.

) Case. A: The edge i,j, is a back eqie; i.é. With

respect ‘to the order giveh‘to vert(G) ﬁy P, i1 > Jy-
-

Case B: The edge iljl is a forward edge; i.e.

.11 < Jl-

Case A breaks down as follows:

Case Al

il > bZ,)'

j Case A2

R

“~Case A3

In this third case,

-

a

1 ¢ jl < b1 ( or symhetrically,

bl < jl < a, ( and 1 ). ¥

~—

1 € By

a, < jr,g ¢y ( and il < ey ).

.

191 is useless, al ~,

i

the edge 1

contradiction. ( See Figure 4.6 )

FV
2
»

r

59
L 4
o
. g ""“"\.
e
e s

)




Figure 4.4

- Figure 4.6



If a, < i,

61

Cases Al and A2 are further subdivided.

Al Case Al (a) a

1 §Jy S3y

Here the edge iljl is useless, a contradiction. ( See
Figure 1.7. )
-

\
\

Case Al tb) a, Jl <« b, o« il‘( a, -,

Here G mimics MIN.5. ( See Figure 4.8. ) The labelling of

vertices of G required by the definition of‘mimiqkinz is

-

shown explicitly in thé figure.

¢ -

- Qase A} (c) ?1 < jl < b1 g'az < if < Cpe

If a, = i,, then a, < j, so that G mimics MIN.6. ( See’
Figure 4.9. )

2

2 1 then G mimics MIN.5. ( See Figure 4.10. )

2
.

Case Al (d) a, ¢ jl <b, <c, ¢1i

1 1 . A

1 < Cy and a, < j, or vert( G ) coul@ be

written as the union of two cyches.

Note that i

que G mimics MIN.7. ( See Figure 4.11. )

r

A2: Case A2 (a) b1 < jl < il ¢ By Here the

edge ilj is useless, a con;rg?iction. ( See Figure .

. !
. ’

1
4.12. )
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Figure 4.10 |

Figure 4.11

. Figure 4.12
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Case A2 (b) a, < i < K
If Jl = b1 then the reduction of G can be mimicked
on MAX.1 ( See Figure 4.13. ) and we are done.
If jl > bl then G mimics MIN.8. ( See Figure 4.14. )

Case A2 (c) c, ¢ il < b2.
Either Jy # bl or i, # b2. since i,J, # b2b1' Since

b1 < jl < a, and ¢y < il < b2. the roles of il and jl are

reversed’when G is reversed. (See Figure 4.15. )

Therefore, without 1099Jof generality, sbppose that jl #

This takes us from Figure 4.15 to Figure 4.16.

L s

But now al < Jl < a, < c1 < 11 < 02’ and dl < bl £

bll

Jye Thua”\).l and i, can play the roles of bl an@;pz in the
skeleton of G. Switching the roles Of'iljl and szl gives
" ” by i e

case Al (d) which has already been dealt with.“}
This concludes case A.
Case B is divided as follows: . ‘
Case B1: i, <b

Case B2: b

i~
[N

Case B3: a, < i1 < jl < Cye

In Case B3, let x be a veftex between il‘and jl on




Figure 4.13

* . Figure 4.14
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Figure 4.15
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Figure 4.16
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P. Then G mimics MIN.2. ( See Figure 4.17. )

Cases Bl and B2 are further subdivided.
Bl: Case Bl (a): jl < bl
Let x be a vertex between il,and jl on P. Here G mimics

MIN.2. ( See Figure 4.18. )

Case Bl (b): jl = bl'

Here G mimics MIN.9. ( See Figure 4.19. )

Case Bl(c): bl < Jl < a,.
Here G mimics MIN.10. ( See Figure 4.20. )
Case Bl (d): a, f jl < b2'

Consider the cycle C following P from a, to il' edge
11j1, P from Jl to b2' edge b2b1' P from b1 to 8y, then

edge aya, . Recall the cycle Z from the proof of Lemma
-«

4.2: Z is the cycle chéistinz of the path in P from ¢,

to Cos together with the edgﬁ_czcl. We see that C n Z is
connected. Therefore, vert( G‘) # vert( CU Z ), as G is
a three hump digraph. We have two possibilities:

(i) There is a vertex x between iljand b1

Here G mimics MIN.12. ( See Figure 4.21. )
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Figure 4.20
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‘between b,-and j, .

)

(i1) ThereW™is a vertex x between a, and the lessén

68

of Jl' él.

Here G mimics MIN.12. ( See Figure 4.22. )

Case Bl (e): bz < Jy
Conaider the cycle C following P from a, to il’ then edge
iljl, then P from jl to Cos then edge CoCy then P from
¢y to b2, then edge bzbl'
a,a, . Now vert( G ) cannot equal vert( C U X ),

then P from bl to 8y, then edge

.vert( CU Y ) or vert( CU Z ). This forces one of two

cases:
(i) There is a vertex x of P between a, and cy-

-» .

Here G mimics MIN.1. ( See Figure 4.23. )

(ii) There are vertices of P between i1 and b1 ang

‘,- "
Here G mimics MIN.13. ( See Figure 4.24. )
-
b &
B2: Case B2 (a) j; < cy. .

Here G mimics MIN.2. ( See Figure 4.25. Let x be any _

vertex between il and Jlu Y%  a

Case B2 (b): c} < Jl < bz._
We make two cases:

(i) There is some vertex x of G, a%v< x < cl.'Here G

~
'

-
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Figure 4.25

Figure 4.26
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mimics MIN.1. ( See Figure 4.26. )

(ii) There is no vertex of G between azhand c, on P.
Then we cannot have i1 = a, and jl = Cyo as iljl was
chosen to be an extra-skeletal edge. By the symmetry of
this case under reversal, we may assume that il # a,. »
Replace P by the hamiltonian path H. H starts with the
successor of il' follows P to 8, then follows edge a,a,
to get to a,. Then H follows P from a, to il' then iljl
to jl. Next, H follows P from jl to Cgye If ¢, 2 jl' then
H stops at Cgye Otherwise, H follows edge CoCy to ci, then
PAto the predecessor of Jl' ( See Figure 4.27. ) With
respect to the new skeleton, G fal;s undér case Bl(e),
ffyhiép.haa already been_dedlt;giyh:' |
: ‘7‘{' '» ) ‘ . - l -."
This completes the case when m = 1. '
m > 1:

Without loss of ienefality we can assume that edge

o

iljl falls ( up to reversal of G ) under one of cases
Al(a!. AZ(a), A2(b) or A3 of the classification for m =
1. This is true because we have shown that if G contains
an edie iljl ggiling under one of the other cases, G
niiica a graph of MIN. Likewise assume that every other

extra-skeletal edge of G falls under one of these cases.
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( Under the appropriate ‘renaming, of course. ) We thus * -,

use these cases for the breakdown of the present case. \\<;‘~
. Case Al (a) a, < jl < i1 < bl'

Suppose that edge iljl falls under case Al (a). Since g

i.ljl is not a useless edge, and G has no forward edges,

either there is an M under edge iljl' or an edge forms an

M with edge iljl. However, any edge under iljl is an edge

of case Al (a). Likewise, of the four types of edges ,

remaining, only those falling under’ case Al (a) could

form an M with iljl. Thus without loss of generality ( up

to renaming ), say that edges iljl and 1252 form an M,
with a, < jx'< jz < il < i2 < bl' Here G m;mics MIN.14.
( See Figure 4.28. )

R

Case A2 (a) "bl < jl < i1 <‘92.‘

N
Without loss of generality ( up to renaming ), edges iIJl i

o »and 1252 faorm 59-“: b1 < ji < jz < i1 < 12 < a,. Here G o

mimics MIN,15. ( See Figure 4.29. )

Cas _ a, ¢ Jy; ¢ i, < e, ' .
. V2 2 ¢ %% 1 o~
Without loss of generality ( up to remaming ), edges i,Jj, '

and i,j, form an M. However, we now have two - . )

'poshisilatie-:

.
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(1) Edge i falls under case A3 ( after

272 '
appropriate renaming.) Without loss of generality ( up to
renaming ), %

, az < Jl < 32 < 11 < 12 < Cl'

Here G mimics MIN.15. ( See Figure 4.30. ;

272

appropriate renaming.) Without loss of generality ( up to

(ii) Edge 1 falls under case A2 (b) ( after

renaming ),

bl — j2 < a, < Jq < i, < i1 < Cy-

Here G mimics MIN.16. ( See Figure 4.31. )

l:_;lga.z(il(cl.

Without loss of. generality, we may now assume that every

Case A2 (b) b

extra-skeletal edge of G falls under case A2(b). However
with reversals, this allows three possibilities.:
(i) We have b1 = Jz > i1 < 12 < Cy- Here G mimics

MIN.S.

( See Figume 4}_: ) - B

(ii) We have b2 = 12' j2 < il.

( See Figure 4.33. )

Here G mimics MIN.3.

(iii) We have b2 = iz, jz > il. Here G mimics
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Figure 4.32

Figure 4.33

Figure 4.34
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MIN.17. ( See Figure 4.34. )

N\

We have now proved the theorem.
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Chapter 5: Two Hump Digraphs

In this chapter we wil% consider two hump digraphs.

We prove T

-

Theorem 3.9: Let G be a two hump digraph. Then

either G mimics a digraph H'\in MIN, or a reduction of G
is mimicked by a digraph K in MAX. ' 3
In analogy to the previous chapter, we introduce

skeletons. , .

Definition: Let G be a two hump digraph. Thenwye say
that G has a skeleton if

(1) We can write vert( G ) = vert( P ) where P is a

~

directed Hamiltonian path in G.
(2) G has at least two additional edges a,a,, byb,
where

a with respect to the order P induces on 5

1 < bl < a, < b2

vert(G), a, is the initial vertex of P, b2 the terminal

vertex of P.

\

/ ‘

We call the digraph made up of P together with the

~edges asa,, bzb1 the_skeleton of G . ( See Figure 5.1 )

Other edges of G are called extra-skeletal edges.

Lemma 5.1 ( The Skeleton ): Let G be a two hump
digraph. Then G has a skeleton.

77
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Proof: We know that Y n X is a directed path. Let bl
be the source of this directed path and a, the sink. Let
b2 be ihe predecessor of bl.in Y. Let 8, be the successor

of a, in X. ( See Figure 5.2 )

Then thedygrtices of G all lie on the directed path

a, b1 & az~ b2. The edges azali bzb1 exist by
definition. Finally, in the case ;hat a, = bl or a, = b2'
vert( G ) lies on a cycle, X or Y respectively.D

Remark: The roles of X and Y in thg previous proof
are interchangeable.

Proof of Theorem 3.9: This proof involves a very
long enumeration of cases, classifying the two hump
digraphs. Assume again that G has no useless edges. Again
the case breakdown refers to the skeleton of G. Label the

L3

extra-skeletal edges of G by i,0¢9 1232; e xy lmjm' We

- make cases based on m.

= 0: If G is its own skeleton we are done. Here a
reduction of G can be mimicked by MAX.1. ( See Figure

5.1 )

m = 1: We have two branches to our case division:
Case I: The edge iljl is a back edge; i.e. il > Jl
with respect to the order given by P.
. Cagse II: The edge iljl is a forward edge; i.e.

L
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CASE I ( ONE BACK EDGE )

Case I gives rise to several subcases. If
a, < Jl < bl’ then we form cases based on il'
.Case A a, < jl < b1 and il < bl'

Here the edge iljl is useless, a contradiction. ( See

-

Figure 5.3 )

Note: Later on in the proof, when we consider the
possibility that m > 1, it will be useful to have names
for the various types of back edges occurring in G. When
m = 1, we have 5 subcases of case I, viz. cases A, B, C,
D and E. We call an edge irjr of G a | v
type A ( B, C, D, E ) edge if the graph G’', formed by
reﬁoving from G all ex;ra—akeletal edges other than irjr,
falls under case A ( B, C, D, E ) of the present

discussion. i

Case B a, = jl and bl < i1 < a,.
( Therefore i1 l'az. )
A reduction of G can be mimicked By MAX.12. ( See Figure

5.4 )
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1 < Jy < bl and bl < i, < a,.

A reduction of G can be mimicked by MAX.2. ( See Figure

Case C . a

5.5 )

In the next cage we will want to invoke symmetry. In

preparation, we note that a digraph G is versatile if and

only if GRL the #éverse of G, is versatile. It is useful

|

now to extend our concept of type A, B, C, D, E edges to

reverse edges. An edge irjr is a reverse type A

4B, C, D, E) edge if G'® falls under case A ( B, C, D,

E ) of the present discussion, where G' is again the
dfaph formed from G by removing all extra-skeletal edges

other than i_j_.
e o

-

Casg D a, ¢ jl < b1 and a, < il.

If &, = Jl' then il < bz. otherwise the edge 1131 taken

1
with the path P forms a cycle through all the vertices of
G, a contradiction. However now iljl and azal can
interchange roles, and we are in case B. Thus in the
present case, we assume without loss of generality that
a; < Jjg. Syinet;ically. we assume that i, < b,, or G is

the reverse of a graph falling under case B. A reduttion

of G can be mimicked by MAX.16. ( See Figure 5.6 )
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Figure 5.5

Figure 5.6
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¢ Jy ¢b

This concludes an enumeratioﬁ of the subcases when

a, T
To reduce work, we again invoke symmetry. Let G have

an edge iljl with a, < il < b2' Then GR, the reverse of

R

G, is clearly a two hump digraph. Again, vert( G ) =
L

vert ( PR) where PR is the reverse of P. Renaming a, as

1

’ ’ ’ ’ s :? s :?
bz, a, as p 5 bl as a}, b2 as a;, i, as jj aqd J, as 112
we see that GR is a two hump digraph with skeleton

R ’ ’ ' ’ o 3 :,., .

P uU { b2 bl » a,'a, } and an additional edge 1191 with

-al' < Jl < bl'. We see that the case when

F £
a, < i, ¢ b, and the case when a, ¢ jl < b, are gymmetric

2 1 2 1 1
and may be regarded as equivalent. For m > 1, however, it
will occasiohally be necessary to distinguish between
"normal"” type B or C edges, and " reversed " type B or C
edges.

Case E b1 < jl < a, ( and i, < a, ).

Here the edge i is useless, a contradiction. ( See

191
Figure 5.7 )

Thus when m = 1, and iljl is a back edge, G is

mimicked by one of the graphs of MAX. We also draw
r
attention to the 5 basic types of back edge which G can

have. These 5 types of edges figure in later case

-~

-
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divisions.

CASE II ONE_FORWARD EDGE)

e 1\

Case II also gives rise to several subcases;
however, this case may be dealt with very simply once we
have made the following observation: For mosf'forward

{

edxeg ij, a skeletoﬁ for G can be chosen so that‘ij
becomes a back edge with respect to that skeleton.

As we remarked earl!!}; there is a skeleton for G in
which the roles of X and Y are reversed. Now the vertices
of G may be divided into three sets:

vert( X \%Y ), vertg XNnYyY), vert( Y \ X ).

With respect to the skeleton we have given for G, these

- sets occur in this order. However, if the roles of X and

“Y are reversed, then the order of these sets reverses.
\

5
Thus if i, and Jl are not both' in the same one of these

1
seté; a forward edge iljl becomes a back edge when X and
\
Y are interchanged. Therefore in the present case we

r:‘ é
assume without loss of generality that i1 and jl are both
in the same one of the listed sets.
Case.1I1.1: We have il,_j1 €e X \Y, i.e.
1 .
Some vertex x of P must lie between il and 31} Here G

a, < i1 < Jl <b

.




mimics MIN.2 ( See Figure 5.8 )

Case I11.2: We have il' Jl €« XN Y, 1.e.,

b1 < i, < jl § a,.
Consider the cycle C differing from X in that the .path

from i1 to jl in X is replaced in C by the edge iljl.

( See Figure 5.9. ) Then cycles C and Y have an

4 . r

intersection which is. not connected, and by the proof of
]

the Intersection Lemma', Lemma 3.2,. G mimics MIN.1 or

.
\

MIN.2

Case II.3: We have i 'Jl € Y \ X.
> €
Interchanging the roles of X and Y, this case is
~equivalent to case II.1.

This concludes CASE II, and hence the case when m =

1. . ‘

m > 1:

In light of the foregoing, we may now assume that
any inglglgggl forward edge of G may be turned into a

back edge by inférchanging cycles X and Y. ‘We will now
show that in fact all extra-skéletal.edges‘yf G may
simultaneously be-;ssumed to be back edges. Suppose that
iljl is a back edge and izjz is a forward edze; By Case

II, we may assume that reversing the roles of X and Y

- -
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would make izjz a2 back edge. We make cases as follows.

Case II+A: Edge iljl falls under case A. By assumption,
edge izjz becomes a back edge when the roles of X and Y
are interchanged. However, in the present case, when X

and Y are switched, iljl remains a back edge ( since il'

jl € X ). We may thus assume that both iljl and 1232 are

-
-~

back edges.

Case II+B: Edge iljl falls under case B.

Case II+G: . Edge iljl falls under case C.

Case II+D: Edge 1151 falls under case D.

Case II+E: Edge iljl falls under case E. In this case,
if the roles of X and Y are interchanged, iljl and 1232

are both back edges and we are finished. ( Both~il.

jl €e XnNnY. )

In case II1+B we make the following subcases based on

ipdyt
Case II+B 1: a, < i2 L
Case II+B 1 (a) bl $ Jg & 14

cycle C differing from X in that the path from 12 to 32

Consider the

in X is réplaced 4n C by the edge izjz and the path from
i1 to a, in X is replaced by the edge ilal. ( See Figure
5.10 ) Then cycles C anmexhave disconnected

. i.\ e
intersection, and by the proof of the intersection lemma,

|
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G mimics MIN.1 or MIN.2.
Case II+B 1 (b): i1 < 32 . Consider the cycle
C following P from a, to 12’ then edge 1252' then P to
b2, tﬁen bzbl' then P from b1 to il' finally ilal. ( See

Figure 5.11 ) Then cycles C and X have disconnected
intersection, and by the intersection lemma, G mimigcs .

MIN.1 or MIN.2.

Case II+B 2: bl < i2 < a,. Since i,

assume that jz €Y\ X, viz. a2'< JZ' Then G mimics the

e XnNnY,
triangle, MIN.l1. ( See Figure 5.12 )

In casy II+C we make the following subcases based on

12J2:

Case II+C 1: ay < i2 < jl. ( Thus b1 < j2 o}

Again G mimics the triangle. ( See Figure 5.13. )

Case II+C 2: jl < i2 < bl’ Again, b1 < Jz.

Case II+C 2 (a): b1 < 52 < il. Consider

the cyclé C following P from j, to i,, then edge i,j,,

then P to il' finally i ( See Figure 5.14 ). Then

1v1°
cycles C and X have disconnected Intersection, and by-the

intersection lemma, G mimics MIN.1 or MIN.2.
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Case II+C 2 (b) il < j2. Consider the

cycle C following P from Jl to 12, then edge i then P

adgs

to b,, then b,b,, then P froufb1 to i,, finally i

2" 2P 1 191

( See Figure 5.15 ). Then cycles C and X have
disconnected intersection, and by the intersection lemma,

G mimics MIN.1 or MIN.2.

-

-~ Case II+C 3: b, ¢ i, < a

1 2 ( Thus a

2° 2.¢ g )

We have two cases:

(i) il < 52' Here G mimics the tr}angle. ( See
Figure 5.16)

(1i) i1 = az. Here G mimics MIN.22. ( See Figure
5.17. )

Case II+C 4: Here G-mimics MIN.2

12 = 32'
( See Figure 5.18 )

We can use case II+C to attack case II+D. Suppose
that G has an edge ij of type D. Then G can mimic a
digraph H which falls under case C. ( See Figure 5.13ﬁ)’
One walks 32 modulo paths on G by following P from a2 to
i, then edge ij. Similarly, one walks 43 by following

then P from b, to a,.

edge byb,, 1 2

7

?ﬂ:j
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Suppose that G also has a forward edge kl. Then
usually, G can mimic a digraph H' derived from H by
adding a forward edge. Digraph H’' will fall under case
II + C, and hence be versatile. An example is shown in
Figure 5.20. Difficulties only arise if b1 s k, 1 ¢ i. In
such a case, each of k and 1 lies on one of the paths on

-

which we would walk edges 32 and 43 of H.

Suppose then that b1 < k, 1 ¢ i. By the symmetry of

type D edges under reflgption, we assume that b, < k,

1

1"¢ a However this means that both k anﬂ 1 lie in X N
{

2.
Y, and this case was dealt with under II.1.

We have now shown that i and izjz may both be

ljl
assumed to be back edges. A simble induction on th
number of forward edges in G shows that we may assume
that every extraskeletal edge of G is a back edge.

For economy of cases in the rest of this chapter, we
will use the following case divisions:
(1) Every extraskeletal edge o@ G is a back edge of case
E. £
(2) Graph G has a back edge of case A and ( up to
reversal ) every back edge of G is a back edge of either

case A or E.

(3) Graph G has a back edge of case B and ( up to

—

B
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reversal ) every back edge of G is a back edge of either
case B, A, or E.

(4) Graph G has a back edge of case C and ( up to
reversal ) every back edge of G is a back edge of either '
case C, B, A or E.

(5) Graph G has a back'edge of case D.

Case (1): Every extraskeletal edﬁé;EY\G is a back edge of

case E.
If every edge of G is of type E then without loss of

generality i and izj2 form an M where >

171
a, < b1 < Jl (J2 < il < 12 < a, < bz, Here G mimics

MIN.15. ( See Figure 5.21 )

Cagse (2): Graph G has a back edge of case A and ( up to ¥
reversal ) every back edge of G is a back edge of either

case A or E.

i

o —
Note that an edge of type A can never form an M with
an edge of type E. Thus if G has an edge of type E, it
will have two type E edges forming an M as in the
previous case. Therefore we ‘:y asshme in this case that

G has only type A back edges.

iIf m = 2, then without loss of generality ( invoking
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the M lemma, and renaming if necessary ) a; ¢ jl < j2 <

i, ¢ 1

1 < b!.

2
If a, = Jl' then a reduction of G is mimicked by

MAX.7. ( See Figure 5.22 )
If bl is the successor of 12 on P, then a reduction

of G is mimicked by MAX.15. ( See Figure 5.23 é

<

i i a, < jl and there is a vertex of G between i2 and

b,, then G mimics MIN.18. ( See Figure 5.24. )

For the remainder of Case (2), assume that m > 2.

Suppose thaf G has edges 1 a type A edge, and -

171

izjz, a type A edge after reversal, i.e. a, < jl < il <

»

b1 and a, < j2

generality, G also has edges i3j3 and 1434 where

< 12 < b2. Then without loss of

a, < j3 < jl < 13 < i, < b1 < a, < Jg < é2 5_14 < 12 <

b,. Here G mimics MIN.19, (“See Ffgure 5.25 )

We may thus assume that every éxtra—skeletal edge
isjs of G is a true type A edge, viz. a, < js < iB < bl'
We now introduce a "stripping” method of classification,
that will serve us again in fhe next chapter. Since G has
only type A eQﬁes;“EﬁE‘these only in the first "half" of
G, we strip away other edges of G, and use these type A

edges for our classification:

Let G’ be the graph obiaTJed from G by renoJinx the
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edges a8, and bzbl‘ Consider the gtrongly connected p
components of G’ consisting of more than one vertex.’At
least one such component exists, singg @ has back edges.
If more than one such component gxigks. then without los§
of generality G has edges iljl}fizjz, i3j3' i4j4 where
al-g jl < jz < il < 12 < 33 < j4 < 13 < 14 < bl'
since each of these componeénts contains an M. Here G

mimics MIN.20. ( See Figure 5.26 )

Thus, without loss of generality, we may speak of
the strongly connected coﬁponeﬁt G" of G’ containing more
than one vertex. Since G" is a strongly connected
digraph, we.qay invoke our previous classification
rgsults to say things about the structure of G". This is
our "stripping" method.

Clagssificatio emma L .

Without loss of generality G has three back edges igdgs
1odpr dgdas WACR 876 By Uidg § &4 4 85 8 35 € 4y ¢ Bua

Here G mimics MIN.Z21.

-

( See Figure 5.27 )

"
-

Subcase- G" has edges of type E only: As we
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have seen previously, G" , hence G._mimics MIN. 15.

Subcase- G" has edges gf type A only: Here
without loss of generality ( up to reversing the roles of
X and Y and reversal ) G has edges 11Jl' lodos iaja, i4j4
with
a, $£Jy ¢ jz < Jg < i, <.13 < Jy < i, < 14 < bl' Here G
mimics MIN.66.( See Figure 5.28 )

Subcase- G" has an edge of type B: Here without

loss of generality ( up to reversing the roles of X and Y
.. o . ¥, "

and reversal ) G has edges 1,010 19d9y 13J,4 with

ay < jl & JS < jz < i3 < il < 12 < bl' Here G mimics

MIN.23. ( See Figure 5.29 )

Subcase- G" has an edge of type C: Here without
loss of generality ( up to reversing the roles of X and Y
and reversal ) G has edges 1,0y 1pJg 14d4 with
a, < jl < j3 < jz < 13 ¢ iy < 12 < bl' Here G mimics

MIN.24.( See Figure 5.30 )

Subcase- G" has an edge of type D: Here without
loss of generality ( up to }eversing the roles of X and
Y ) G has edges iljl' izjz, 13j3 with
a

1 < Jq < Jg < Jog < i, < i, < i, < bl' Here G nﬁmxcs‘ o
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MIN.24.( See Figure 5.31 )

Thus if G" falls under type (2) of the

classification lemma, G mimics a digraph of MIN.

Eana- §* 3 h of t (1) of ti

cl icati 3
Here without loss of generality G has edges iljl' 1252.
igJq with a, < Jq < Jo < jl < i, < il < 13 < bl' ( The

edge i3j3 is the back edge of the skeleton of G". Since

191
izjz to form an M under 1333.‘Thus either ja # JZ' or

bl

il # 13. We may assume that il # 13 without loss of

generality, up to reversal of G, or the interchanging of

13j3 can be assumed to be a useful edge, we bick i

cycles X and Y. )
We form subcases:
§gpgggg;_gl < ﬂzi Here G mimics MIN.18.
( See Figure 5.32)
- = = = - i
Subcase Jz a, JS' m 3 In this case a

reduction of G can be mimicked by MAX.14.( See Figure

5.33 )

Subcase-_m > 3: Either repeating our stripping

process on G" will lead to a graph of type (3) of the

B
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classification lemma, or a graph of type (2) of the
classification lemma with a back edge, or a graph of type
(1) of the classification lemma.

We may assume, without loss of generality that the
first two cases do not occur. Assume without loss of
generality that a, = JZ = 33. Otherwise G mimics a
digraph of MIN as already shown above. Without loss of
generality, up to reversal of G, or the interchanging of
cycles X and Y, G contains an e&ge i4j4 with 54 = a, and

15 %

1 i4 4 Thus G mimics MIN.25. ( See Figure 5:34:)

13.

\

This completes our examination of Case (2).

®

Ca;e (3): Graph G has a back edge of type B and
( up to reversal ) every back edge of G is a back edge of

either type B, A, or E.

-
In analogy to the previous case, we first dismiss the

cases where not every edge of G is a type B edge.

Suppose that G ﬁas an edge izjz of type E. If the

292

edge, then we are done, as in case (1). Thus without loss

edge of G intersecting i to form an M is a type E

of generality we may assume that

a, = jl < b1 < 52 < 11 < i2 < a, < bz.
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If we now interchange the roles of edges ilJl and azal,
then with respect to the new skeleton for G, izjz is an
edge of type C. ( See Figure 5.35 ). We may thus delay

discussion of this possibility until case (4).

From now on, let us assume that G has no edges of
type E.

Suppose that G has a type A edge izjz. Then without
loss of generality,"izjz forms an M with a type A edge
1333. We have two possibilities:

(i) a, = jl < jz < J3 < iz < 13 < b1 < i1 < By Here

G mimics MIN.26. ( See Figure 5.36 )

(ii) a, ¢ jz < Ja < 12 < 13 < b1 <Jy ¢ By ¢i; =
bZ' Here iljl ig a reversed ‘type B edge. Here G mimics

MIN.27. ( See Figure 5.37 )

For the remainder of this case we assume that G has
( up to reversal ) only type B edges. For convenience, we

rename edges here:

Let iljl, izjz. §ia g irjr be the ( normal ) type B
edges of G
jl = j2 — RO jr = a < bl < i, 4 i, € i ir < ‘2'
Let k,1 k

111 Kploy oo ksls be the ( reversed ) type B

110

|
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Figure 5.35

Figure 5.36 R

Figure 5.37




edges of G

b1 < 11 < l2 € sasf ls ¢ a, < kl = k2 S seel ks - bZ'
If s = 0 then for large enough q, a reduction of G
i

is mimicked by MAX.13. (See Figure 5.38 )

If s > 0 and for some t and u, lt < iu, then G

mimics MIN.28. ( See Figure 5.39 )

We may thus assume from now on that r > s > 0, and
lt > iu for all t, uvwhere 1 ¢ u < r, 1-¢ t ¢ s.
Our remaining‘subcases are based on the values of s

L

and r. -

Subcase r < 3, 8 = 1: Here a reduction of G is

mimicked by MAX.12. ( See Figure 5.40 )

"Subcagse r = 2, 8 > 1: Here G mimics MIN.29.
.‘See Figure 5.41. ).

Subcase r > 2: Here G mimics MIN.30.

( See Figure 5.42. ) e »

This concludes our examination of case (3).

It will prove economical to deal with case (5) before

112
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case (4).

Case (5): Graph G has a back edge of case D.

",

Note thﬁ: case (5) shows mirrorvaymmetry; If G is

reversed, then switching the roles of ay, 32; bl’ bz, il’

Jq with b2’ bl’ 85, 81’ Jyo i1 respectively again gives
us case (5). This symmetry allows us to reduce our number
of cases.™ *
m = 2
S

We make the following case divisions based on j2:

Case Da: Jp ¢ Jy- =

Case Dg: Jl < 32 <'b1 ('12 < '11 by symmetry ).

Case D7v: b1 ¢ J2 < a, ( iz ¢ a, ). In this case

the edge izjz is useless, a contradiction.

( See Figure 5.43 )

Case Da is subdivided as follows depending on 12:

Case Dal: i2 < jl. In this case the edge izjz

is useless, a contradiction. ( See Figure 5.44 )

\

Case Da2: Jl < 12 < il. We have two

possibilities: "
(i)'i2 # 32. Here G mimics MIN.31.

( See Figure 5.45. Here the greater of 8y, 12 is labelled

”~



. 115

1 g
- | - Figure 5.43
""5\._ : \ -
5 P '\‘ : -
“, = -
5

Figure 5.44 )




116

/ (ii) 12 :-az.’Here G mimics MIN.32. ( See
Figure 5.46 )

~

Case Da3l:. il'_ i2' ( Thus eilher il < 12. or

al and 12 = b2, then G is a

i, < b2° Note that if Jy

one hump digraph. By symmetry, assume that i )

2 < §;2I

Here G mimics MIN.33. ( See Figure 5.47. )

L

In Case DB, we may assume that i, < i otherwise

2 1’
iﬁtérchqﬁ%&ng the roles of iljl,,izjz gives Case Dd" Case

Dp is'subdit!ded as follows depending on 12:
. 2 1 292

isAuseléss, a contradiction. ( See Figure 5.48 )
. 7 -

N - Case Dpl: i, < b,. IA this case the edge i

r

Case Dp2: = bl

<
1o (iSee Figure 5.49 )~ *. . . - DY - Wy s

. i,. Here G' mimivs MIN.32,

-

-
o "

. This concludes the subcase when .m = 2."
> 23 -
By the foregoing analysis' we may .assume that any’

éxtra-skelétai edge of“E falls ( up to reversal ) Qndé:
- . . “ ! 4 & /.«
cases Dal, Dpl or D=v.

"o
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Case- Edges of type Dal: Without loss of generality,

invoking the M lemma, G[ﬁhs edges 12j2, 1333, with al <

32 < Jg < 12 < 13 < Jq- In this case, G mimics MIN.14.
( See Figure 5.50 )
/7
Case- Edges of type Dpgl: Without loss of generality,

G has edges izjz, iajs, with Jl < jz < J3 < iz < 13 < bl'

In this case, G mimics MIN.15. ( See Figurg 5.51 )

-
Case- Edges of type Dv: Without loss of generality,
(Guhas edges 1232, 1333’ "itb.bl < JzyS ja < i2 < 13\$ a,. )

‘ v
In thisnpase, G_mimics MIN.15, as in case (1). ( See

Figure 5.52 ) " . o

-

“

This concludes our examination of case (5).

>
“lCase (4): Graph G has a“back edge of case C and:( up to

reversal ) every back edge of G is a back edge of either

-

case C, B, A or E.

— -

'

=2 (. e
We form qs based on ‘j2' ' ?
i ) (;

Case 3 j2 < Jli( 52 = a, , or not az < iz < b2 )

Cage Cp: . jlg 52 < bl' ( not a, < 12 < b2 ) ;
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Case 91: b1 € Jy ¢ i
Case Cs&: i,¢ J, ¢ By, _
Case Ce: 8, < Jo- In this case the edge 1232 is

useless, a contradiction. ( See Figure 5.53 )

We form subcases of case Ca based on 12'
Case Cal: i, < Jq- In this case the edge 1232

is useless, a contradiction. ( See Figure 5.54 )

Case Ca2: Jl < i2 < bl’ Here make three

further divisions: )

(i) j, ¥ a,. Inlthis case, G mimics MIN.16. ( See Figure

5.55 )

{1} JZ = ap, il < 8. In this case, G mimics MIN.34<

( See Figure 5.56 )

.

{£1i1) il'= B 52 = a,. In this case, a reduction of G is

mimicked by MAX.11l. ( See Figure 5.57 ) .

Case Cal: | + IR

1 12 < il Here make two further

-
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