
Neighbourhood-based Vision Systems

CHRISTOPHER J. HENRY and JAMES F. PETERS

Department of Electrical and Computer Engineering, University of Manitoba, Canada

The problem presented in this paper is how to find similarities between digital images useful

in design cybernetic vision systems. The solution to this problem stems from a neighbourhood

based vision system. A neighbourhood is viewed in the context of a covering of a visual space

defined by tolerance relations. A consideration of neighbourhoods andtolerance classes leads

to a highly practical tolerance near set approach in vision systems. The contribution of this ar-

ticle is an algorithm for finding tolerance classes, a new measure for quantifying the similarity

between tolerance classes, and a practical application of the tolerance space approach.
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This article presents a new algorithm for finding tolerance classes that represents a first step toward

the application of the tolerance near set approach in visionsystems. Tolerance classes are groups

of objects that have similar features, and are defined with respect to a tolerance space (introduced

by Zeeman during the 1960s (Zeeman 1965; Zeeman and Buneman 1968)). Tolerance spaces are

related to both physical and visual spaces, which are the domain of visual systems. As defined

by (Wagner 2006), a physical space is the space revealed by instrumentation and is independent of

the observer, while a visual space is a non-objective interpretation by the observer of the physical

space based on the perception of external stimuli. For instance, it is impossible to determine the

accuracy of a person’s judgement of the properties of a physical room, whereas these values can

be obtained exactly through measurement. In the former case, for example, it could be that some
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shadows caused the observer to misjudge the actual shape of the room. Wagner’s definition of

a visual space describes the environment of a visual system,which is an artificial approach to

mimicking the human visual system. Generally, these systems consist of a sensing device (such as

a camera) that generates an image, or stream of images, as well as a processing unit that interprets

the images and makes decisions. As a result, a visual system operates in a visual space since the

judgements are based only on the output of the sensors.

A tolerance space relates objects to one another based on similarities of appearance or descrip-

tion rather than on equivalence. Tolerance spaces were inspired by the imperfections of the senses

(see,e.g., (Henry 2010b)) and are inherent to visual spaces, a fact observed by Zeeman when he

noted that a single eye cannot identify a 2D Euclidean space because the Euclidean plane has an

infinite number of points. Rather, we see things only within a certain tolerance (Zeeman 1965;

Henry 2010b), which is implicit in the definition of a visual space given above. Further, tolerance

near sets are disjoint set of objects that have similar descriptions. The focus of this article is to

present a new algorithm for finding tolerance classes, and todemonstrate the use of tolerance near

sets for finding similarities between digital images, an approach that can be used in the design of

vision systems. Also, a practical application of the tolerance space approach is presented by way

of a method for determining the resemblance between images extracted from videos sequences

showing non-arthritic and arthritic hand-finger movements. This article is organized as follows:

The next section presents related works, and is followed by asection reviewing tolerance spaces

and tolerance near set theory. Next, the nearness metrics are presented for evaluating the similar-

ity of images, succeeded by a discussion on applications to vision systems and the experimental

results.

RELATED WORKS

The results presented in this paper are obtained from a tolerance near set metric for measuring

the similarity of images called the tolerance nearness measure (tNM ), and a new measure called

the tolerance Hamming measure (tHM ). Further, we propose, that these results suggest that the

presented metric would be useful in vision systems. The nearness measure was crated out of a
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need to determine the degree that near sets resemble each other, a need which arose during the

application of near set theory to the practical applications of image correspondence and content-

based image retrieval. Specifically, the nearness measure was introduced by Henry and Peters

in (Hassanien et al. 2009, Section VII.A, pp. 964-965) whereit was given as a solution to the

problem of image resemblance of MRI images. At the same time, the nearness measure was also

introduced in (Henry and Peters 2009). Since then, the notation of the nearness measure has been

refined (as reported in (Henry and Peters 2010)) and it has been applied to the problems of image

resemblance and correspondence (Meghdadi et al. 2009; Peters et al. 2009; Peters and Puzio 2009;

Peters 2009c, 2010, 2009b,a) which is closely related to content-based image retrieval (Henry and

Peters 2010),i.e. the problem of retrieving images based on the perceived objects within the image

rather than based on semantic terms associated with the image. The nearness measure has also

been applied to patterns of observed swarm behaviour storedin tables called ethograms, where

the goal is to measure the resemblance between the behaviours of different swarms (Ramanna and

Meghdadi 2009).

Metrics are essential to measuring the similarity of images(which is common in content-based

image retrieval). For example, (Yang et al. 2010) identify aproblem in the medical community

that a retrieval system needs to take into account both visual and semantic features. For instance,

a tire has the same visual appearance as a donut, but they do not belong in the same category. This

problem is addressed by using a training set that includes side information,i.e. information on

the semantic relationship between training data. Then, distance metric learning is performed to

learn a distance function from training data. Another example of a similarity metrics is presented

in (Zheng et al. 2003) where image features of colour histogram, image texture, Fourier coeffi-

cients, and wavelet coefficients are combined into an image signature and the metric is measured

as the vector dot product between signatures. Other examples of metrics include the multires-

olution tangent distance for use in image alignment appliedto the problems of image retrieval

and mosaic creation (Vasconcelos and Lippman 2005), or the metric presented in (Mojsilović and

Rogowitz 2004) that relates low-level image features to high-level image semantics.

As was mentioned in the introduction, a vision system is one that that mimics the power and
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capability of the human sense of sight (i.e. the ability to detect light) combined with some type of

cognition, perception, or interpretation of the stimulus.We propose that the approach to measuring

the similarities of images presented in this article could be useful in the design of a visual system.

While a complete survey of vision systems is outside the scopeof this article, the following exam-

ples are presented to give an idea as to the various types of vision systems. (Bakhtari and Benhabib

2007) present a vision system with the goal to position multiple cameras to identify and track mul-

tiple objects of interest in dynamic multiobject environments. (Hussmann and Liepert 2009) use

3-D time of flight (rather than stereo vision) to control a robot in a simulation of loading a con-

tainer ship. The visual system generates range data to the objects that need to be loaded onto a ship,

and performs segmentation of an image generated from range date to identify the centre of gravity

and the rotation angle (information necessary to grab the simulated containers). Finally, another

example of a vision system is the CogV system presented in (Zhang and Tay 2009) which mimics

saccade and vergence movements in a binocular camera systemto identify objects of interest in

the field of view.

PRELIMINARIES

The approach taken in this article is made possible using tolerance spaces introduced by E.C. Zee-

man during the 1960s (Zeeman 1965; Zeeman and Buneman 1968) aswell as recent work on

tolerance near sets (Peters 2009c; Hassanien et al. 2009; Henry 2010b) and hand images (Ferrer

et al. 2009). The termtolerance spacewas coined by Zeeman in 1962 in modelling visual percep-

tion with tolerances (Zeeman 1965). A tolerance space〈X,'〉 consists of a setX and a binary

relation' on X (' ⊂ X × X) that is reflexive (for allx ∈ X, x ' x) and symmetric (for all

x, y ∈ X, if x ' y, theny ' x) but transitivity of' is not required. Every tolerance relation

determines some specific subsets of the space〈X,'〉. A setA ⊂ X is apreclassof the relation

' if and only if for all x, y ∈ A, x ' y (i.e. A × A ⊂ '). All precalsses of a given tolerance

relation are naturally ordered by inclusion. Preclasses maximal with respect to inclusion are called

tolerance classes.

A specific tolerance relation can be defined as follows. LetB denote a set of real-valued
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functions (called probe functions) that represent object features and letφi ∈ B, φi :→ <. The

descriptionof an objectx is a vector given byφB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φk(x)),

wherek is the length ofφB(x) andφi(x) represents a feature value ofx. Let ε ∈ (0, +∞). A

tolerance relation∼=B,ε is defined by

∼=B,ε= {(x, y) ∈ X ×X : ‖ φB(x)− φB(y) ‖
2
≤ ε},

where‖ · ‖
2

is theL
2

norm (i.e., Euclidean distance). Every tolerance relation determines two

useful sets, namely, neighbourhood and tolerance class. Theneighbourhood of a pointx ∈ X with

respect to a tolerance∼=B,ε is a setN∼=B,ε
(x) = {y ∈ X : y ∼=B,ε x}. Observe that(x, y) ∈ ∼=B,ε

for objectsy ∈ N(x). By contrast, for a tolerance classA ⊂ ∼=B,ε, for everyx, y ∈ A, we have

(x, y) ∈ ∼=B,ε. Let Hε
B(X) denote the family of all tolerance classes of relation∼=B,ε on the setX.

Near sets are disjoint sets that resemble each other, and tolerance near sets are near sets defined

using the tolerance relation. Resemblance is determined by measuring the distance between object

descriptions. For instance, a tolerance classX resembles (is near) a tolerance classY if, and only

if there arex ∈ X andy ∈ Y such thatx ∼=B,ε y. If this is the case, tolerance classesX andY are

considered tolerance near sets.

TOLERANCE CLASS CALCULATION

The practical application of the tolerance space approach to measuring resemblance between dig-

ital images rests on our ability to find tolerance classes efficiently. An algorithm useful in finding

tolerance classes in a tolerance relation∼=B,ε stems from Proposition 1.

Proposition 1. Given a tolerance space〈X,∼=B,ε〉, all tolerance classes containingx ∈ X are

subsets of neighbourhoodN(x).

Proof. Given a tolerance space〈X,∼=B,ε〉 and tolerance classA ⊂∼=B,ε, then(x, y) ∈∼=B,ε for every

x, y ∈ A. LetN∼=B,ε
(x) be a neighbourhood ofx ∈ X and assumex ∈ A. Fory ∈ A, (x, y) ∈∼=B,ε.

Hence,A ⊂ N∼=B,ε
(x). As a result,N∼=B,ε

(x) is superset of all tolerance classes containingx.
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Algorithm:

1. Take an elementz ∈ Z and findN∼=B,ε
(z).

2. Addz to a new tolerance classC. Select an objectz′ ∈ N∼=B,ε
(z) such thatz′ 6= z.

3. Addz′ to C. Find neighbourhoodN∼=B,ε
(z′) using only objects fromN∼=B,ε

(z). Do not include

z in N∼=B,ε
(z′). Select a new objectz′′ ∈ N∼=B,ε

(z′) such thatz′′ 6= z′. Relabelz ← z′, z′ ← z′′ and

N∼=B,ε
(z)← N∼=B,ε

(z′).

4. Repeat step 3 until a neighbourhood of only 1 element is produced. When this occurs, add the

last element toC, and then addC to Hε
B(Z).

5. Perform step 2 (and subsequent steps) until each object inN∼=B,ε
(z) has been selected at the

level of step 2.

6. Perform step 1 (and subsequent steps) for each object inZ.

7. Delete any duplicate classes.

Finally, note the following. We used an added heuristic for step 2 to reduce the computation time

of the algorithm. Namely, an object fromN∼=B,ε
(z) can only be selected asz′ in step 2 if it has not

already been added to a tolerance class created fromN∼=B,ε
(z) (i.e., this rule is reset each time step

1 is visited). In addition, the Fast Library for ApproximateNearest Neighbours (Muja 2009) was

used to find all the neighbourhoods in this algorithm.

A visual example of a sample run of this algorithm if given in Fig. 1 to help clarify the pseudo

code given above. In this case, an example of a neighbourhoodcontaining 21 objects in a 2D

feature space is given, where the position of all the objectsare labelled by the numbers 1 to 21,

the neighbourhood is defined with respect to the object labelled 1, andε = 0.1. Moreover, as per

the definition of a neighbourhood, the distance between all the objects and object 1 is less than or

equal toε = 0.1, but that not all pairs of objects in the neighbourhood ofx satisfy the tolerance

relation. Also, notice that in each figure, the area shaded grey represents objects that satisfy the

tolerance relation with the bold object(s), and the bold object(s) represent a pre-class.

To begin with, Fig. 1a represents Step 1 of the algorithm withz = 1. Step 2 is given in Fig. 1b,

wherez′ = 20. Steps 3 & 4 are given in Fig. 1c-1f. Observe that in Fig. 1f|N∼=B,ε
(3)| = 1 since

all the other bold object in the grey area have been added toC, and, as such, are not allowed to



Neighbourhood-based Vision Systems 7

be included in subsequent neighbourhoods. Step 5 can be explained as follows. Fig. 1 shows the

sequence of steps for selectingz = 20 (the closest object to 1) at the level of Step 2. Hence,

Step 5 states that each object in the neighbourhood of 1 (except 1 itself) should be selected at Step

2. Moreover, the heuristic given after the algorithm statesthat any object added to a tolerance

class derived from the neighbourhood of 1 should not be considered at Step 2. As a result, in

this example, the objects{3, 6, 10, 15, 16} should not be considered again at Step 2 for finding

tolerance classes derived from the neighbourhood of object1. Lastly, note that Step 1 must be

performed for all objects inZ.

NEARNESS METRICS

Applying near set theory to the problem of image resemblancerequires a method for determining

the degree in which two tolerance near sets are similar. LetX and Y be disjoint sets and let

Z = X ∪ Y . Then a tolerance nearness metric (tNM ) (Henry 2010a) is given by Eq. 1.

tNM∼=B,ε
(X,Y ) = 1−

1

|Hε
B(Z)|

·
∑

C∈Hε

B
(Z)

|C|
min(|C ∩X|, |[C ∩ Y |)

max(|C ∩X|, |C ∩ Y |)
. (1)

The idea behind Eq. 1 is that similar sets should have tolerance classes that are evenly divided

betweenX andY . This is measured by counting the number of objects that belong to setsX and

Y for each tolerance classC ∈ Hε
B(Z), and then compare these counts as a proper fraction. The

measure is simply a weighted average of all of the fractions.

In Eq. 2, we introduce a second similarity measure for comparison with Eq. 1 defined as

tHM∼=B
(X,Y ) = 1−

1

|H∼=B
(Z)|

·
∑

C∈H∼=B
(Z)

1(|avgn(C ∩X)− avgn(Y ∩X)| ≤ ε), (2)

where1(·) is the indicator function and avgn(C ∩X) is the average feature vector used to describe

objects inC ∩X. Here, the idea is that, for similar sets, the average feature vector of the portion

of a tolerance class (obtained fromZ = X ∪ Y ) that lies inX should have values similar to the

average feature vector of the portion of the tolerance classthat lies inY . ThetHM measure was
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FIGURE 1 Visualization of Algorithm. (a)N(1), (b) N(20), created using only objects fromN(1), (c) N(10),
created using only objects fromN(20) (which was created using only objects fromN(10)), (d) N(6), again created
using only objects fromN(10), etc., (e)N(15), and (f)N(16).
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inspired by the Hamming measure in (Ferrer et al. 2009), and since the Hamming measure is not

defined in terms of sets, we have not included it in our resemblance measurement experiments.

VISION SYSTEMS APPLICAITONS

As was mentioned, one of the goals of this paper is to demonstrate that the proposed approach

would work well in a vision system. Currently, our approach only measures the similarity of

images. However, this approach could be combined with a realtime image acquisition system to

produce a vision system. For instance, the ALiCE II system we reported in (Peters et al. 2006) (and

shown in Fig. 2) is an example of a system that would benefit from the approach presented in this

article. ALiCE II is an autonomous line-crawling robot designed to inspect hydro-electric power

transmission equipment. Currently, the system includes simple target tracking based on correlation

between input frames and template images of equipment ment for inspection. This system could

be improved using the approach for measuring similarities of images presented in this paper to

give a full vision system capable of identifying damaged hydro-electric equipment. Here the idea

is that the robot would contain a database of images representing equipment which needed to be

inspected, and only images identified as similar would be further inspected by ALiCE II.

FIGURE 2 Figure demonstrating application of proposed image resemblance method in the ALiCE II vision sys-
tem (Peters et al. 2006).
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EXPERIMENTAL RESULTS

This section presents a practical application of the tolerance near set approach for measuring the

similarity of images. Specifically, Eq. 1 & 2 are used to perform image retrieval on a database of

98 hand-finger images. This collection of images includes normal as well as rheumatoid arthritis

patient hand-finger movements. The images were extracted from video sequences obtained from

a telerehabilitation system that monitors patient hand-finger motion during rehabilitation exercises

(see,e.g., (Szturm et al. 2008)). It is important to have some way to compare nuances in normal

versus arthritic hand-finger movements. Hence, the interest in measuring the similarities between

the hand images. Before performing the experiments, the images were preprocessed so that only

the hand is contained in the image (see,e.g. Fig. 3). The approach was to consider each image

as a query image and to use precision/recall plots to determine the effectiveness of the nearness

measures. Implementation of the measures is accomplished in the following manner. Define a RGB

image asf = {p1,p2, . . . ,pT}, wherepi = (c, r, R,G,B)T, c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈

[0, 255], andM,N respectively denote the width and height of the image andM×N = T . Further,

define a square subimage asfi ⊂ f such thatf1∩f2 . . .∩fs = ∅, andf1∪f2 . . .∪fs = f, wheres is

the number of subimages inf . Next, label the query image and the current image for comparison

asX andY respectively, and view each image as a set of subimages. In this experimentonly

one probe function was used, namely the average orientationof lines (obtained using Mallat’s

multiscale edge detection algorithm (Mallat and Zhong 1992)) within a subimage. Finally, the

precision/recall plot comparing the two measures is given in Fig. 4. It can be observed thattNM

measure has the best precision versus recall for image queries from the patient database.

CONCLUSION

This article has presented a new algorithm for finding tolerance classes based on the insight pro-

vided by Proposition 1. Moreover, a new measure of similarity was introduced for comparison with

the tNM , and a practical application of the nearness measures was demonstrated by way of cor-

respondence experiments on images obtained during rehabilitation exercises for arthritic patients.
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(a) (b) (c)

(d) (e)

FIGURE 3 Figure showing preprocessing required to create toleranceclasses and calculate nearness measure. (a)
Original image, (b) segmented image, (c) hand segment only,(d) cropped image to eliminate useless background, and
(e) final image used to obtain tolerance classes. Each squarerepresents an object where the colour (except black)
represents the average orientation of a line segment withinthat subimage.
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FIGURE 4 Precision/recall plot comparingtNM with tHM . PA, PB, and PC refer to three patients and PB is the
patient with arthritis. Note, an ideal plot would show a precision of 100% until recall reached 100% showing that only
images from the same category as the query image were returned first

While the new measure did not perform as well as thetNM measure, the results presented here

provide an important first step to developing a new metric forsimilarity evaluation in vision sys-

tems. Finally, future work will consist of incorporating the tolerance near set approach presented

here in a real-time vision system.
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