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Abstract

Thue characterized completely the avoidability of unary patterns. Adding func-

tion variables gives a general setting capturing avoidance of powers, avoidance of

patterns with palindromes, avoidance of powers under coding, and other ques-

tions of recent interest. Unary patterns with permutations have been previously

analysed only for lengths up to 3. Consider a pattern p = πi1(x) . . . πir (x), with

r ≥ 4, x a word variable over an alphabet Σ and πij function variables, to

be replaced by morphic or antimorphic permutations of Σ. If |Σ| ≥ 3, we

show the existence of an infinite word avoiding all pattern instances having

|x| ≥ 2. If |Σ| = 3 and all πij are powers of a single morphic or antimor-

phic π, the length restriction is removed. For the case when π is morphic, the

length dependency can be removed also for |Σ| = 4, but not for |Σ| = 5, as

the pattern xπ2(x)π56(x)π33(x) becomes unavoidable. Thus, in general, the

restriction on x cannot be removed, even for powers of morphic permutations.

Moreover, we show that for every positive integer n there exists N and a pat-

tern πi1(x) . . . πin(x) which is unavoidable over all alphabets Σ with at least N

letters and π morphic or antimorphic permutation.
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1. Introduction

The avoidability of patterns by infinite words is a core topic in combinatorics

on words, going back to Thue [2, 3]. Important results are surveyed in, e.g., [4, 5].

Recently, a natural generalisation of classical patterns, in which functional

dependencies between variables are allowed, has been considered [6, 7, 8]. More5

precisely, patterns consist of word variables, as usual, together with function

variables (standing for either morphic or antimorphic extensions of permutations

on the alphabet) which act on the words. For example, consider the pattern

xπ(x)xπ(x) whose instances are words uvuv that consist of four parts of equal

length, that is, |u| = |v|, where v is the image of u under some permutation of10

the alphabet. For example, aab|bba|aab|bba (respectively, aab|abb|aab|abb) is an

instance of xπ(x)xπ(x) for the morphic (respectively, antimorphic) extension of

permutation a 7→ b and b 7→ a.

We note that, while patterns xk describe all repetitions of some exponent k,

patterns of the type πi1(x) . . . πik(x) describe words that have an intrinsic repet-15

itive structure, hidden by the application of the different iterations of the func-

tion π, which encode of the original root of the repetition.

Patterns with involutions were studied in [6, 7]; motivation for consider-

ing involutions includes word reversal and DNA/RNA complementation. The

main result obtained was that for each unary pattern with one variable invo-20

lution, one can identify all alphabets over which it is avoidable. In the more

general setting of patterns with permutations, the only results obtained so far

(see [8]) regarded cube-like patterns under morphisms or antimorphisms (anti-

/morphisms, for short) which are powers of a single (variable) permutation, i.e.,

patterns of the form πi(x)πj(x)πk(x), where i, j, k ≥ 0. The avoidability of such25

patterns was completely characterised: for each πi(x)πj(x)πk(x) one can deter-

mine exactly the alphabets over which the pattern is avoidable. Contrary to
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both the classical and to the involution settings, where once a pattern is avoid-

able for some alphabet size it remains avoidable in larger alphabets, a cubic

pattern with permutations may become unavoidable over a larger alphabet.30

Our contribution

We extend the results of [8] as follows.

First, we construct a ternary word that avoids all patterns πi1(x) . . . πir (x)

where r ≥ 4, x a word variable over some alphabet Σ, with |x| ≥ 2 and |Σ| ≥ 3,

and the πij function variables that may be replaced by anti-/morphic permuta-35

tions of Σ. This is the first result where the avoidability of patterns involving

more functions, which are not powers of the same initial variable permutation,

has been shown; even more, we do not restrict these functions so that all have

the same type: we can mix both morphic and antimorphic permutations.

On the down side, the result above only works when we restrict the length40

of x to be at least 2. However, we also show that such a restriction is needed.

Indeed, for each n ≥ 1 there exists a unary pattern π1(x) . . . πn(x) where all

functions are powers of the same anti-/morphic permutation π, i.e., πj = πij

with 1 ≤ j ≤ n, and an integer N such that πi1(x) . . . πin(x) has as instances

all the words of length n over an alphabet of size at least N ; in other words,45

πi1(x) . . . πin(x) is unavoidable over all alphabets Σ with |Σ| ≥ N .

In between these two results, we show that all patterns πi1(x) . . . πin(x) with

n ≥ 4 under anti-/morphic permutations are avoidable in Σ3. Similarly, all pat-

terns πi1(x) . . . πin(x) under morphic permutations are also avoidable in Σ4, but

not in Σ5. So, just like in the case of cubes with permutations, there are pat-50

terns under anti-/morphic permutations (including the eventually unavoidable

patterns we construct) which are avoidable in small alphabets (e.g., in Σ3 or

Σ4) but become unavoidable in larger alphabets. On the other hand, unlike

the case of cubes with permutations, where there exist patterns unavoidable in

Σ2 and Σ3 (e.g., xπ(x)π2(x), see [8]), all unary patterns of length at least 455

under anti-/morphic permutations are avoidable in both Σ2 (see [7]) and Σ3,

and, in the case of morphic permutations, in Σ4 as well. Note that 4 is the
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largest integer i such that all patterns of length 4 under morphic permutations

are avoidable in Σi.

2. Definitions60

We freely use the usual notations of combinatorics on words (see, for in-

stance, [4]). Define alphabets Σk = {0, . . . , k − 1} and Σ′k = {1, 2, . . . , k}. We

use wR, to denote the reversal of word w.

A morphism f (respectively, antimorphism) of Σ∗k is defined by its values

on letters; f(uv) = f(u)f(v) (respectively, f(uv) = f(v)f(u)) for all words65

u, v ∈ Σ∗k. When we define an anti-/morphism it is enough to define f(a),

for all a ∈ Σk. If the restriction of f to Σk, is a permutation of Σk, we call

f an anti-/morphic permutation. Denote by ord(f) the order of f , i.e., the

minimum positive integer m such that fm is the identity. If ord(f) = 2, we call

f an involution. If a ∈ Σk is a letter, the order of a with respect to f , denoted70

ordf (a), is the minimum number m such that fm(a) = a.

A pattern which involves functional dependencies is a term over (word) vari-

ables and function variables (where concatenation is an implicit functional con-

stant); a pattern with only one word variable is called unary. For example,

xπ(x)π(π(x))x = xπ(x)π2(x)x is a unary pattern involving the variable x and75

the function variable π. An instance of a pattern p in Σk is the result of substi-

tuting every variable by a word in Σ+
k and every function variable by a function

over Σ∗k. A pattern is avoidable in Σk if there is an infinite word over Σk that

does not contain any instance of the pattern.

In this paper, we consider patterns with morphic and antimorphic permuta-80

tions, that is, all function variables are substituted by morphic or antimorphic

permutations only.

The infinite Thue-Morse word t (see [2]) is defined as t = limn→∞ φnt (0),

for the morphism φt : Σ∗2 → Σ∗2 where φt(0) = 01 and φt(1) = 10. It is well-

known (see, for instance, [4]) that t avoids the patterns xxx (cubes) and xyxyx85

(overlaps).
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Let h be the infinite word defined as h = limn→∞ φnh(0), where φh : Σ∗3 → Σ∗3

is a morphism due to Thue [2], which was rediscovered and studied also by Hall

[9], defined by φh(0) = 012, φh(1) = 02 and φh(2) = 1. For the simplicity of the

exposure, if h =
∏∞
i=0 hi with hi ∈ Σ3, we define the infinite word v over Σ′3 as90

v =
∏∞
i=0 vi, with vi = hi + 1. The infinite word v (respectively, the word h)

avoids squares xx and does not contain the factors 121 and 323 (respectively,

the factors 010 and 212).

We investigate the factors of an infinite word g that have the form

πi1(x)πi2(x) . . . πir (x)

with x a non-empty word and each πij a morphic or antimorphic permutation

for 1 ≤ j ≤ r. Replacing x by π−1
i1

(x) and πij (x) by πij (π−1
i1

(x)) for 1 ≤ j ≤ r,95

this is equivalent to investigating factors of g of the form xπj1(x) . . . πjr−1(x)

with x a non-empty word, and each πj` a morphic or antimorphic permutation

for all 1 ≤ ` ≤ r − 1.

3. A general result

We use the word v defined above to define the word u ∈ Σω3 given by

u =

∞∏
i=0

(0v3i1v3i+12v3i+2).

Theorem 1. The word u has no factor of the form xπi(x)πj(x)πk(x) with |x| ≥100

2 and πi, πj and πk are each a morphic or antimorphic permutation.

Proof. (Morphic case) Suppose, to the contrary, that u has a factor w =

xπi(x)πj(x)πk(x) with |x| ≥ 2, where each πr is a morphic permutation. We

consider the block structure of x; that is, we parse x as

x = ak11 a
k2
2 · · · a

kn−1

n−1 a
kn
n

where the ai ∈ Σ3, with a` 6= a`+1, k` ≥ 1, 1 ≤ ` ≤ n. Certainly, πr(x) has the

same block structure for each r:

πr(x) = (πr(a1))k1(πr(a2))k2 · · · (πr(an−1))kn−1(πr(an))kn
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and letters πr(a`) and πr(a`+1) are distinct, since πr is a permutation.

We consider several cases based on n, k1 and kn as follows:

Case 1: n = 1. This means that w = ak11 (πi(a1))k1(πj(a1))k1(πk(a1))k1 .

Since |x| ≥ 2, we have k1 ≥ 2. If a1 = πi(a1), then w contains the factor105

ak11 (πi(a1))k1 = a2k1
1 . Since 2k1 ≥ 4, this is impossible; the block lengths in u

are 1, 2 or 3. We conclude that a1 6= πi(a1). Similarly, πi(a1) 6= πj(a1), and

πj(a1) 6= πk(a1). It follows that, in the context of w, (πi(a1))k1 and (πj(a1))k1

are successive blocks of u; however, this implies that k1k1 is a factor of v. Since

v is square-free, this is impossible.110

Case 2a: n > 1, and k1 = 3 or kn = 3

Suppose k1 = 3. This implies that an 6= πi(a1); otherwise w contains a

block aknn (πi(a1))3 = akn+3
n , of length 4 or greater. Similarly, πi(an) 6= πj(a1)

and πj(an) 6= πk(a1). Each (πi(a`))
k` and (πj(a`))

k` is thus a complete block

of u, and v contains the factor (k1k2 · · · kn)2. This is impossible. Similarly, one115

argues that kn = 3 gives a contradiction.

Case 2b: n > 1, and k1, kn ≤ 2

If an = πi(a1) and πi(an) = πj(a1), then u contains the factor

an−1a
kn+k1
n (πi(a2))k2 . . . (πi(an−1))kn−1πi(an)kn+k1(πj(a2))k2 . . . (πj(an−1))kn−1πj(an),

and v contains the square factor ((kn + k1)k2k3 · · · kn−1)2, which is impossible.

Similarly, if an 6= πi(a1) and πi(an) 6= πj(a1), then v contains the factor

a1a
k2
2 . . . aknn (πi(a1))k1(πi(a2))k2 . . . (πi(an))kn(πj(a1))k1πj(a2),

and then v contains the factor (k2k3 · · · k1)2, which is again impossible. In

conclusion, exactly one of the equations an = πi(a1) and πi(an) = πj(a1) holds.

Similarly, exactly one of πi(an) = πj(a1) and πj(an) = πk(a1) holds.120

Case 2bi: k1, kn ≤ 2, and n ≥ 3. Suppose that an = πi(a1) and πi(an) 6=

πj(a1). (The other case is similar.)

Since πi(an) 6= πj(a1), but

πi(an−1)(πi(an))kn(πj(a1))k1πj(a2)
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is a factor of u, we see that knk1 is a factor of v, whence kn 6= k1. Since

we have already reasoned that k1, kn ≤ 2, we see that k1 + kn = 3. Now

an−2(an−1)kn−1a3
n is a factor of u, so that kn−1 6= 3. On the other hand, since

πi(an−2)(πi(an−1))kn−1(πi(an))knπj(a1)

is a factor of u, and πi(an) 6= πj(a1), we conclude that kn−1kn is a factor of v;

therefore, kn−1 6= kn, and since kn, kn−1 < 3, we have kn−1 = 3− kn = k1.

Similar reasoning shows that k2 = kn. But then

πi(an−2)(πi(an−1)kn−1(πi(an))kn(πj(a1))k1(πj(a2))k2πj(a3)

is a factor of u, so that kn−1knk1k2 = (k1kn)2 is a factor of v. This is impossible.125

Case 2bii: k1, kn ≤ 2, and n = 2. We make four subcases, depending on

whether (k1, k2) = (1, 2) or (2, 1), and on whether a2 = πi(a1), πi(a2) 6= πj(a1)

and πj(a2) = πk(a1), or alternatively, a2 6= πi(a1), πi(a2) = πj(a1) and πj(a2) 6=

πk(a1).

1. (k1, k2) = (1, 2), a2 = πi(a1), πi(a2) 6= πj(a1), πj(a2) = πk(a1):130

In this case, u contains the word

a1a
2
2πi(a1)(πi(a2))2πj(a1)(πj(a2))2πk(a1)(πk(a2))2

= a1a
3
2(πi(a2))2πj(a1)(πj(a2))3(πk(a2))2

so that v contains a word α3213β, α, β ∈ {1, 2, 3}, β ≥ 2. In fact, if β = 3,

then v contains the square 32. Assume then that β = 2. Thus 32132 is a

factor of v; however, 32132 has no right extension in v, since 321321 and

321322 end in squares, while 321323 ends in 323. This is impossible.

2. (k1, k2) = (2, 1), a2 = πi(a1), πi(a2) 6= πj(a1), πj(a2) = πk(a1):135

In this case, u contains the word

a2
1a2(πi(a1))2πi(a2)(πj(a1))2πj(a2)(πk(a1))2πk(a2)

= a2
1a

3
2πi(a2)(πj(a1))2(πj(a2))3πk(a2)
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so that v contains a word α3123β, α, β ∈ {1, 2, 3}, α ≥ 2. In fact, if α = 3,

then v contains 32. Assume then that α = 2, so that v contains 23123.

Since v is recurrent, 23123 must have a left extension in v; however, none

of 123123, 223123 and 323123 is a possible factor of v.

3. (k1, k2) = (1, 2), a2 6= πi(a1), πi(a2) = πj(a1), πj(a2) 6= πk(a1):140

In this case, w contains the word

a1a
2
2πi(a1)(πi(a2))2πj(a1)(πj(a2))2πk(a1)(πk(a2))2

= a1a
2
2πi(a1)(πi(a2))3(πj(a2))2πk(a1)(πk(a2))2

so that v contains a word α21321β. No left extension of this word is a

factor of v.

4. (k1, k2) = (2, 1), a2 6= πi(a1), πi(a2) = πj(a1), πj(a2) 6= πk(a1): In this

case, w contains the word

a2
1a2(πi(a1))2πi(a2)(πj(a1))2πj(a2)(πk(a1))2πk(a2)

= a2
1a2(πi(a1))2(πi(a2))3πj(a2)(πk(a1))2πk(a2)

so that v contains a word α12312β. No right extension of this word is a

factor of v.

We see that w contains no instance xπi(x)πj(x)πk(x) with |x| ≥ 2 where each145

πr is a morphic permutation.

(Antimorphic case) Suppose, for the sake of getting a contradiction, that u

has a factor w = xπi(x)πj(x)πk(x) with |x| ≥ 2, where one of the πr is an

antimorphic permutation.

For notational simplicity, we will suppose that πi is antimorphic; the other150

cases are similar.

We consider the block structure of x:

x = ak11 a
k2
2 · · · a

kn−1

n−1 a
kn
n

where the ai ∈ Σ3, with a` 6= a`+1, k` ≥ 1, 1 ≤ ` ≤ n. Since πi is antimorphic,

πi(x) = (πi(an))kn(πi(an−1))kn−1 · · · (πi(a2))k2(πi(a1))k1 .
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If kn = 3, then u has the factor aknn πi(an)kn , and either u has a block of

length 6 (if an = πi(an)), or v has a factor 33; both cases are impossible.

If kn = 2, we make cases based on n: If n = 1, then w = a2
1πi(a

2
1)πj(a

2
1)πk(a2

1),

and the factor πi(a
2
1)πj(a

2
1) of w implies that either u has a block of length 4,155

or v has a factor 22; both cases are impossible.

If n > 1, then factor akn−1
n−1 a

kn
n πi(a

kn
n )πi(a

kn−1

n−1 ) gives the same contradiction.

We conclude that kn = 1. Since |x| ≥ 2, we have n ≥ 2. If an 6= πi(an), then

the factor a
kn−1

n−1 a
1
nπi(a

1
n)πi(a

kn−1

n−1 ) of w implies that 11 is a factor of v, which is

impossible. We conclude that an = πi(an).160

Suppose |x| ≥ 3. If kn−1 = 1, then w contains a
kn−2

n−2 a
1
n−1a

2
nπi(a

1
n−1)πi(an−2),

so that v has the factor 121. This is impossible. Thus kn−1 > 1. This forces

u to contain a block ayn−1a
2
nπi(a

z
n−1), where y, z ≥ 2 and y2z is a factor of v.

However, then v has 22 or 323 as a factor, which is impossible. We conclude

that |x| = 2. It follows that n = 2, k1 = k2 = 1.165

Write w = a1a2b1b2c1c2d1d2, each ai, bi, ci, di ∈ Σ3, and a1 6= a2, b1 6= b2,

c1 6= c2, d1 6= d2. We have arrived at this case by considering the word xπi(x),

assuming that πi is antimorphic. If, instead, πi is morphic and πj is antimorphic,

(resp., πi and πj are morphic, πk is antimorphic) the same analysis goes through

considering the word πi(x)πj(x) (resp., πj(x)πk(x)).170

We must have a2 = b1, or v contains the square 11. Similarly, b2 = c1. Now,

however, v contains the square 22. This is a contradiction. �

Consequently, u has no factor of the form π`(x)πi(x)πj(x)πk(x) with |x| ≥

2 and πi, πj and πk are each a morphic or antimorphic permutation. This

means that u has not factor that contains, at its turn, an instance of a pattern175

π`(x)πi(x)πj(x)πk(x) with |x| ≥ 2 and πi, πj and πk are each a morphic or

antimorphic permutation. So, the following general theorem follows.

Theorem 2. The word u has no factor of the form πi1(x)πi2(x) . . . πir (x) with

|x| ≥ 2, r ≥ 4, and πij is a morphic or antimorphic permutation for 1 ≤ j ≤ r.
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4. Avoidability for small alphabets180

4.1. Ternary alphabets

We now show that all patterns of length at least 4 under anti-/morphisms

which are powers of the same permutation are avoidable in Σ3. More precisely,

we show that for each pattern P = xπi(x)πj(x)πk(x) there exists an infinite

word (that depends on P) that does not contain any instance of P with π an185

anti-/morphic permutation of Σ3.

Let us note from the beginning that the permutations of Σ3 are either cycles

(i.e., ord(a) = 3 for all a ∈ Σ3) or involutions (i.e., ord(a) ≤ 2 for all a ∈ Σ3).

We use as a basic lemma the following corollary of Theorem 1.

Corollary 1. The word u has no factor of the form xπi(x)πj(x)x, where π is190

an anti-/morphic permutation of Σ3.

Proof. By Theorem 1 we know that u has no factor of the form xπi(x)πj(x)x

with |x| ≥ 2, by just taking in the statement of the theorem πi = πi, πj = πj ,

and πk the identity on Σ3. We assume, for the sake of a contradiction, that u

has a factor xπi(x)πj(x)x with |x| = 1. Say x = a ∈ Σ3. Due to the form of u195

we get that between the two occurrences of the letter x = a we must find the two

other letters of Σ3 (that is, both letters from Σ3 \ {a} = {b, c}). Indeed u does

not contain a block of 4 consecutive identical letters, so the two occurrences of

the letter x = a belong to separate maximal blocks made of letters x = a of the

word u, and between two such blocks the other two letters of Σ3 must occur.200

But this would mean that u contains the factor abca, so h should contain the

factor 11, a contradiction. �

The following lemma is immediate, as v avoids squares.

Lemma 1. The word v has no factor of the form xxπj(x)πk(x), xπi(x)πi(x)x,

xπi(x)πj(x)πj(x) where π is an anti-/morphic permutation and i, j, k are non-205

negative integers.

In [8] the following was shown.
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Lemma 2. There exists an infinite word vm (respectively, va) over Σ3 that

has no factor of the form xπ(x)x, when π is replaced by a morphic (respectively,

antimorphic) permutation.210

The final result we need is from [7].

Lemma 3. For each pattern P = xπi(x)πj(x)πk(x), where i, j, k are non-

negative integers, there exists an infinite word uP ∈ Σω2 (respectively, u′P ∈

Σω2 ) that does not contain an instance of P when π is replaced by a morphic

(respectively, antimorphic) involution of Σ2.215

We can now show the two main results of this section.

Lemma 4. For each pattern P = xπi(x)πj(x)πk(x), where i, j, k are non-

negative integers, there exists an infinite ternary word wP that does not contain

any instance of this pattern with π a morphic permutation of Σ3.

Proof. Clearly, each morphic permutation π of Σ3 is either a cycle or an220

involution. In all cases, π6 is the identity morphism on Σ∗3. Consequently, we

can replace the exponents i, j, k by their values modulo 6.

By Corollary 1 and Lemmas 1 and 2, all the patterns xπi(x)πj(x)πk(x) with

one of i, j, k equal to 0 and π replaced by a morphic permutation are avoidable,

either by v (when i = 0), either by vm (when j = 0), or by u (when k = 0).225

Similarly, the patterns xπi(x)πj(x)πk(x) with i = k are avoided by vm, since

this word does not contain instances of any pattern πi(x)πj(x)πi(x), while those

with i = j or j = k are avoided by v.

Consequently, we only have to consider the case when 0, i, j, k are pairwise

distinct, and each is at most 5 in the following.230

We look at the reminders of i, j and k modulo 3.

If {1, 2} ⊆ {i( mod 3), j( mod 3), k( mod 3)}, we get that when replacing

π with a cycle of Σ3 (e.g., π(0) = 1, π(1) = 2, π(2) = 0), the instance of

P = xπi(x)πj(x)πk(x) will contain all the three letters 0, 1, and 2. It follows

that uP (from Lemma 3) avoids p. Indeed, when π is replaced by an involution235

of Σ2 the result follows from the definition of uP , while when π is replaced
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by any other permutation of Σ3, its instances will contain the letter 2, so uP

canonically avoids all of them.

So, the only case left to consider is when {i( mod 3), j( mod 3), k( mod 3)}

is either {0, 1} or {0, 2}. If i, j, k are all equal modulo 3 it follows that at least240

two of them are actually equal, a contradiction to our earlier assumption that

each two of the exponents are different. So, one of i, j, and k should be 3.

It is not hard to see that xπi(x)π3(x)πk(x) is avoided by v. Indeed, an

instance of this pattern will always contain a square. In the case when π is a

cycle of Σ3 we can only obtain words which have the form xf(x)xf(x) for some245

morphic permutation f of Σ3, while for π an involution the words we obtain

definitely contain an instance of either xx or π(x)π(x). So, in all cases, the

instances of xπi(x)π3(x)πk(x) contain squares. By a similar argument, every

pattern xπi(x)πj(x)π3(x) or xπ3(x)πj(x)πk(x) is avoided by v, as each instance

of such a pattern contains a square. �250

Lemma 5. For each pattern P = xπi(x)πj(x)πk(x) , where i, j, k are non-

negative integers, there exists an infinite ternary word wP that does not contain

any instance of this pattern with π an antimorphic permutation of Σ3.

Proof. Just like in the previous proof, for each antimorphic permutation π of

Σ3, we have that π6 is the identity morphism on Σ∗3. Consequently, we can255

replace the exponents i, j, k by their values modulo 6.

Using Lemma 2, we get that the patterns xπi(x)πj(x)πk(x) with one of i, j, k

equal to 0 and π replaced by a antimorphic permutation are avoidable, either

by v (when i = 0), either by va (when j = 0), or by u (when k = 0). The

patterns xπi(x)πj(x)πk(x) with i = k are avoided by va, while those with i = j260

or j = k contain squares, so are avoided by v.

So, just like before, we only have to consider in the following the case when

each two of 0, i, j, k are distinct and each is at most 5. And, again, if we have

that {1, 2} ⊆ {i( mod 3), j( mod 3), k( mod 3)}, we get that when replacing π

with a cycle of Σ3 the instance of P = xπi(x)πj(x)πk(x) will contain all the265

three letters 0, 1, and 2. So, by Lemma 3, it follows that u′P avoids P.

12



Hence, the only case left to consider is when {i(mod 3), j(mod 3), k(mod 3)}

is either {0, 1} or {0, 2}. The simple case is again when i, j, k are all equal

modulo 3, as it follows that at least two of them are actually equal, which is a

contradiction to our assumption that each two of the exponents are different.270

So, one of i, j, and k should be 3. A more detailed analysis is needed now.

Let us first look at patterns xπ3(x)πj(x)πk(x). Obviously, j and k are not of

the same parity; actually, the pair (j, k) is one of the pairs (1, 4), (4, 1), (2, 5), (5, 2).

Generally, when substituting π with a cycle of Σ3, the pattern xπ3(x)πj(x)πk(x)

equals xxRπj(x)πk(x). But the instances of xxRπj(x)πk(x) always contain a275

square: the last letter of x equals the first letter of xR. When substituting π with

an involution of Σ3, the pattern xπ3(x)πj(x)πk(x) either equals xπ(x)xπ(x)

if j is even and k is odd, or xπ(x)π(x)x if j is odd and k is even. Also in

these cases the instances of the pattern contain squares. So, every instance

of the pattern xπ3(x)πj(x)πk(x) contains a square. This means that v avoids280

xπ3(x)πj(x)πk(x).

Next we consider the patterns xπi(x)πj(x)π3(x). Like before, i and j do not

have the same parity as (i, j) must be one of the pairs (1, 4), (4, 1), (2, 5), (5, 2).

Let us assume that i is even and j is odd. If π is a cycle, we have that a factor

of the form xπi(x)πj(x)π3(x) has the form xf(x)f(xR)xR for some morphic285

permutation f , which contains the square formed by the last letter of f(x) and

the first letter of f(xR). If π is an involution then each factor of the form

xπi(x)πj(x)π3(x) starts with xx. Therefore, v avoids xπi(x)πj(x)π3(x) with i

even and j odd. Further, we assume that i is odd and j is even. If π is a cycle, we

have that a factor of the form xπi(x)πj(x)π3(x) has the form xf(xR)f(x)xR for290

some morphic permutation f , which contains the square formed by the last letter

of f(xR) and the first letter of f(x). If π is an involution then each factor of the

form xπi(x)πj(x)π3(x) is, in fact, xπ(x)xπ(x). So, v avoids xπi(x)πj(x)π3(x)

also for i odd and j even.

Finally, we consider the patterns xπi(x)π3(x)πk(x). Let us assume first295

that i is odd; consequently, k is even (the pair (i, k) is either (1, 4) or (2, 5)). By

Theorem 1, the word u contains no instances of xπi(x)π3(x)πk(x) with |x| ≥ 2.
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We show that u does not contain instances of this pattern with |x| = 1. Assume

that x = a ∈ Σ3. If π is a cycle then the factors xπi(x)π3(x)πk(x) are, in fact,

abab with b ∈ Σ3 such that πi(x) = b. If π is an involution then the factors300

xπi(x)π3(x)πk(x) are abba with b ∈ Σ3 such that π(x) = b. By the structure of

u (which has the form (0+1+2+)ω), we get that it cannot contain such factors.

So u avoids such patterns.

We now consider the case when i is even and k is odd. Let us write the Thue-

Morse word as t =
∏∞
i=0 ti with ti ∈ {0, 1}. Consider the word t′ ∈ {0, 1}ω (also305

used in [7]) given by t′ =
∏∞
i=0 01ti+2.

We show now that t′ avoids xπi(x)π3(x)πk(x) with i even and k odd. If

π is a cycle then xπi(x)π3(x)πk(x) equals xf(x)xRf(xR) for some morphic

permutation f (which is also a cycle). If x starts with 0, then f(x) starts with

1, xR ends with 0, and f(xR) ends with 1. But 0101 is not a factor t′ (there310

are always at least 2 symbols 1 in a block). Thus, if t′ contains an instance of

xf(x)xRf(xR) with x starting with 0, then |x| ≥ 2. Now, 0 is always followed

by an 1, so x should start with 01. This means that f(x) starts with 10, xR

ends with 10, and f(xR) ends with 01. Clearly, 01100110 is not a factor of t′

(as this infinite word does not contain consecutive 0 letters), so if t′ contains an315

instance of our pattern, then |x| ≥ 3. Now, as f(xR) ends with 01 and there are

no two consecutive 0’s in t′ we get that f(xR) should end with 101. This means

that x should start with 010, a contradiction, as 1 letters always occur in blocks

of length at least 2. In conclusion t′ contains no instance of xπi(x)π3(x)πk(x)

with x starting with 0 and π an antimorphic cycle; analogously, one can show320

that t′ contains no instance of xπi(x)π3(x)πk(x) with x starting with 1 and π

an antimorphic cycle. Moreover, by a very similar analysis one can show that

t′ does not contain any instance of xπi(x)π3(x)πk(x) with π an antimorphic

involution. We have, thus, shown that t′ avoids the pattern xπi(x)π3(x)πk(x)

with i even and k odd.325

This concludes the proof of this lemma. �

By Lemmas 4 and 5 we obtain the following theorem.
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Theorem 3. All patterns xπi(x)πj(x)πk(x), where i, j, k are non-negative

integers, and π is substituted by an anti-/morphic permutation, are avoidable

over Σ3.330

We conclude this section with the following result, which follows from the

previous theorem by the arguments already presented in the end of Section 2.

Theorem 4. All patterns πi1(x)πi2(x) . . . πir (x) with r ≥ 4, the ij non-negative

integers, and π an anti-/morphic permutation, are avoidable over Σ3.

4.2. Four and five letter alphabets: the morphic case335

In this section we extend the result of the previous sections, and we show

that all patterns xπi(x)πj(x)πk(x), with i, j, k ≥ 0, are avoidable in Σ4 and at

least one pattern of this form becomes unavoidable in Σ5, when π is substituted

by a morphic permutation.

Let us consider a pattern xπi(x)πj(x)πk(x), with i, j, k ≥ 0. For simplicity,340

the factors x, πi(x), πj , or πk(x) of the pattern are called x-items in the follow-

ing. Our analysis is based on the relation between the possible images of the

four x-items occurring in a pattern, following the ideas of [8]. For instance, we

want to check whether in a possible image of our pattern, all four x-items can

be mapped to a different word, or whether the second x-item and the last one345

can be mapped to the same word, and so on.

To achieve this, we define in Table 4.2 the numbers ki, with 1 ≤ i ≤ 14.

Intuitively, they allow us to define, for a pattern xπi(x)πj(x)πk(x), which are

the alphabets Σm in which we can model certain (non-)equality relationships

between the images of the x-items. For example, in alphabets Σm with m ≥ k1350

we can assign values to x and π such that the images of every two of πi(x), πj(x),

and πk(x) are different (and this property does not hold in alphabets with less

than k1 letters), while for Σm with m ≥ k2 we can assign values to x and π

such that the images of x and πi(x) are equal to some word, while the images of

πj(x) and πk(x) are assigned to two other words (also different between them;355

again, this property does not hold in smaller alphabets). To simplify, we use
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k1 = inf{t : t - i, t - j, t - k, t - |i− j|, t - |i− k|, t - |j − k|} 0123

k2 = inf{t : t | i, t - j, t - k, t - |j − k|} 0012

k3 = inf{t : t - i, t | j, t - k, , t - |i− k|} 0102

k4 = inf{t : t - i, t - j, t | |i− k|} 0121

k5 = inf{t : t - i, t - j, t - |i− j|, t - |i− k|, t | |j − k|} 0122

k6 = inf{t : t | i, t | j, t - k} 0001

k7 = inf{t : t | i, t - j, t | k} 0010

k8 = inf{t : t - i, t | j, t | k} 0100

k9 = inf{t : t - i, t | |i− j|, t | |i− k|} 0111

k10 = inf{t : t | i, t - j, t | |j − k|} 0011

k11 = inf{t : t - i, t | j, t | |i− k|} 0101

k12 = inf{t : t - i, t | k, t | |i− j|} 0110

k13 = inf{t : t - i, t - k, t | |i− j|} 0112

k14 = inf{t : t - i, t - j, t | |i− j|} 0120

Table 1: Definition of the values ki, with 1 ≤ i ≤ 14. We set K = {k1, k2, . . . , k14}.

a simple digit-representation for any of these cases, defined in the last column

of Table 4.2. In this representation, we assign different digits to the x-items

that can be mapped to different words. For example, we use the representation

0123 for the case defined through k1 and 0012 for the case defined by k2. In360

general, when considering a ki, we assign a 4-digit representation to the pattern

xπi(x)πj(x)πk(x) in the following manner: we start with 0, and then put a 0

on all of the remaining three positions corresponding to an x-item πt(x) to such

that ki | t. We then put a 1 on the the leftmost empty position. If the x-item

on the respective position is πr(x), we put 1 on all empty positions s such that365

ki | (r − s), and so on.

Recall that inf ∅ = ∞, so some of the kis may be infinite. However, note

that the set {t : t | i, t | j, t | k, t | |i − j|, t | |i − k|, t | |j − k|} defining k1

is always non-empty, and also that k1 > 3. Indeed, at least two of i, j, k have
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the same parity, so k1 should not divide 2. Similarly, out of 0, i, j, k at least370

two have the same reminder modulo 3, so k1 should also not divide 3. Let

K = {k1, k2, . . . , k14}.

For a pattern xπi(x)πj(x)πk(x), we say that some ki and the digit-string

encoding it model an instance uf i(u)f j(u)fk(u) of the pattern if each two of

the factors u, f i(u), f j(u), fk(u) are equal if and only if the digits corresponding375

to the respective factors in the digit representation of that ki are equal.

Lemma 6. The pattern xπi(x)πj(x)πk(x), with i 6= j 6= k 6= i is unavoidable

in Σm, for m ≥ max{k1, k3, k6, k12, k13}.

Proof. Let p = xπi(x)πj(x)πk(x).

Because m ≥ k1, we have that for every word u ∈ Σ+
m there exists a morphic380

permutation f such that every two words of u, f i(u), f j(u), fk(u) are different.

Indeed, we take f to be a permutation such that the orbit of u[1] is a cycle of

length k1, which means that the the first letters of u, f i(u), f j(u) and fk(u) are

pairwise different. Similarly, the fact that m ≥ k3 (when k3 6= ∞) means that

for every u ∈ Σ+
m there exists a morphic permutation f such that f i(u) 6= u =385

f j(u) 6= fk(u) 6= f i(u). In this case, we take f to be a permutation such that

ordf (u[1]) = k3. We can derive similar observations for k6, k12, and k13, as well

as for all the ki values we defined.

One can check with the aid of a computer, by a straightforward backtrack-

ing algorithm, that if m ≥ max{k1, k3, k6, k12, k13} then the longest word over390

Σm that does not contain an instance of this pattern has length 14. Our com-

puter program (available at https://www.dropbox.com/s/5q5yavloti9nm3h/

lemma6.rb) tries construct a word as long as possible by always adding a letter

to the current word it constructed by backtracking; this letter is chosen in all

possible ways from the letters contained in the word already, or it may also be a395

new letter. An example of one of the longest words our programe constructed,

over an alphabet of size greater or equal to m, which is at its turn greater or

equal to 3 as k1 ≥ 3, is 00120120120111 (adding new letters to this word does

not lead to a longer one). This concludes our proof. �
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In the following Lemmas we show a series of avoidability and unavoidability400

results. Our first result uses the morphism α : Σ∗3 → Σ∗4 that is defined by

0→ 01220112, 1→ 0, 2→ 03110223

Lemma 7. Consider the infinite word:

hα = α(h) = 0122011200311022301220112031102230012201120031102230 . . .

If hα contains an instance of the pattern xπi(x)πj(x)πk(x) then this instance

is not modelled by any element of the set

{k3, k4, k6, k7, k8, k9, k10, k11, k12, k14}.

Proof. The maximum length of a factor of hα that does not contain a full405

image of a letter 2 from the Hall word under α is 24. Using a computer program

(available at https://www.dropbox.com/s/faeyam3lb5kky59/lemma7.rb) we

checked that, there is no factor of the form uf(u)g(u)h(u) with |u| < 25 which

can be modelled by any of the kis mentioned above (with f, g, and h morphic

permutations). By this we mean that there is no factor uf(u)g(u)h(u) of hα,410

with |u| < 25, such that two of the factors u, f(u), g(u), h(u) are equal if and

only if the digits on their respective positions (i.e., 1, 2, 3, and, respectively,

4) in ki are equal. Further, if u is a word of length ≥ 25, and hα contains an

instance uf i(u)f j(u)fk(u) of the pattern xπi(x)πj(x)πk(x), then u contains the

factor 3110223. Based on the repetitions of 1, 2 and 3, the factor 3110223 of u415

should be aligned with some factors of the form abbcdda from f i(u), f j(u) and

fk(u), respectively. The only possible such alignment is to align 3110223 from

u with other occurrences of 3110223. This means that f i, f j , fk are all the

identity, so hα contains a 4-power u4, with |u| ≥ 25. Looking at the occurrence

of u4 in hα we get that the ith occurrence of u in this repetition can be written420

as u′ih(x1,i)h(x2,i) . . . h(xt,i)u
′′
i where 1 ≤ i ≤ 4, x1,i, . . . , xk,i ∈ {0, 1, 2} and,

for 1 ≤ j ≤ 3 we have u′′j u
′
j+1 = h(xj) for some letter xi ∈ {0, 1, 2}. As the

image of each letter under h starts with 0, and none starts with 02 nor with

011, we get that u′1 = u′2 = u′3 = u′4. Thus, u′1 = u′′2 = u′′3 (so, x1 = x2 as well),

and xj,1 = xj,2 for 1 ≤ j ≤ k. Accordingly, h should contain a square, which is425

a contradiction. �
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Lemma 8. Let K ′ = {ki1 , ki2 , ki3} ⊂ K be any subset of size 3 of K. There

exists an infinite word w such that w does not contain 4-powers and if w contains

an instance of the pattern xπi(x)πj(x)πk(x) then it can not be modelled by any

tuples of the set of patterns K ′.430

Proof. We consider all possible combinations of size three of kis, and we check

the avoidability of each combination.

To begin with, assume that ki1 , ki2 , ki3 are all kis whose representations

contain at least three different digits. Then if the word t contains an instance of

the pattern xπi(x)πj(x)πk(x), it can not be modelled by any ki ∈ K ′, as such435

a ki can model only instances of the pattern over an alphabet of size greater or

equal to 3.

Assume now ki1 , ki2 , ki3 are all kis whose representations contain at most

two different digits (e.g., k6, k7, etc.). Then if the word h contains an instance

of the pattern xπi(x)πj(x)πk(x), it can not be modelled by any ki ∈ K ′, since440

h does not contain any square, but these kis can only model instances of the

pattern that contain at least one square.

If two of ki1 , ki2 , ki3 are among the kis whose representation has at least

three different digits, and the other one of them is a ki whose representation

has at most two different digits, then, similar to the previous section, we can445

show that uP (from Lemma 3) does not contain any instance of pattern that can

be modelled by the respective ki. Indeed, this word does not contain instances

of the pattern modelled by the any k ∈ K that can be represented with only two

digits (as such an instance could also be modelled with the restriction that π

is replaced by an involution), and the remaining two kis can, once more, model450

only instances of the pattern over an alphabet greater or equal to 3.

Assume two of ki1 , ki2 , ki3 are any of the kis whose representation has at

most two different digits, and one of them is any ki except k3, k4, k14, which

is represented using at least three different digits. Then h does not contain

instances of patterns that can be modelled by any ki ∈ K ′, because all such455

kis model only instances of the pattern that contain squares or have 4 different
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letters (e.g., the instances modeled by k1).

Assume two of ki1 , ki2 , ki3 are any of kis whose representation has at most

two different digits, and one of them is k3 or k4 or k14, the word defined in

Lemma 7 can avoid them. �460

Lemma 9. For each pattern P = xπi(x)πj(x)πk(x), where i, j, k are non-

negative integers, there exists an infinite word wp that does not contain any

instance of this pattern with π a morphic permutation of Σ4.

Proof. In this proof, we do a case analysis depending on the possible permu-

tations of Σ4 that π can be assigned to.465

If π is assigned to the identical permutation 1Σ4 , then the image obtained is

a 4-power. If π is assigned to a 4-cycle f , then any instance uf i(u)f j(u)fk(u) is,

actually, equal to the word uf i mod 4(u)f j mod 4(u)fk mod 4(u). In this case, if

we have two different exponents then also the factors corresponding to them are

different. Accordingly, these instances (which are not 4-powers) are modelled470

by exactly one ki, called ki1 in the following. If π is assigned a permutation

f that permutes in a cycle three elements of Σ4 and fixes the remaining one,

then any instance uf i(u)f j(u)fk(u) is either a 4-power, if u = ak and a is

the fixed point of f , or uf i mod 3(u)f j mod 3(u)fk mod 3(u), otherwise. Again

these instances are modelled by exactly one ki, called ki2 in the following, and475

a 4-power. Assume π is mapped to a permutation f that is the composition of

two disjoint cycles of length 2, or f consists of a cycle of length 2 and two fixed

points (in other words, f is an involution). Then any instance uf i(u)f j(u)fk(u)

is either the identity, if u ∈ {a, b}∗ and a, b are fixed point of f , or it is equal to

uf i mod 2(u)f j mod 2(u)fk mod 2(u), otherwise. Yet again, these instances are480

modelled by exactly one ki, called ki3 , and a 4-power.

Our statement follows now from Lemma 8, as there exists a word that

does not contain any instance of the pattern that is a 4-power or modelled

by {ki1 , ki2 , ki3}. �

As an example, for i = 3, j = 16, k = 2, if π is mapped to a 4-cycle, we can485

obtain instances which are 4-powers or are modelled by 0102. If π is mapped to
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a 3-cycle and a fixed point, the instances we obtain are 4-powers or are modelled

by 0012, and if π is mapped to an involution, we can obtain instances which are

4-powers or are modelled by 0100. All such instances can be avoided by a single

infinite word, according to Lemma 8.490

According to the previous lemmas, we can now prove the following theorems.

Theorem 5. All patterns xπi(x)πj(x)πk(x), where i, j, k are non-negative

integers, and π is substituted by a morphic permutation, are avoidable over Σ4.

Theorem 6. All patterns πi1(x)πi2(x) . . . πir (x) with r ≥ 4, the ij non-negative

integers, and π a morphic permutation, are avoidable over Σ4.495

The above results are optimal, in the sense that they cannot be extended

for Σ5. This is shown by the next lemma.

Lemma 10. There exists a pattern xπi(x)πj(x)πk(x), with i 6= j 6= k 6= i which

is unavoidable in Σm, for m ≥ 5.

Proof. To show that there exists a pattern xπi(x)πj(x)πk(x) which is un-500

avoidable in Σm it is enough to find i, j and k such that the instances of the

pattern xπi(x)πj(x)πk(x) are all modelled by the set {k1, k3, k6, k12, k13}, from

Lemma 6. To this end, let us consider the pattern xπ2(x)π56(x)π33(x). We

show that this pattern is unavoidable in Σ5. Indeed, if π is mapped to a 5-cycle,

the instances we obtain are modelled by 0123. If π is mapped to a permutation505

composed of a 4-cycle and a fixed point, the instances we obtain are modelled by

0102. If π is mapped to an involution, the instances we obtain are modelled by

0001. If π is mapped to the composition of a 3-cycle and two fixed points, then

the words we obtain are modelled by 0110. Finally, if π is mapped to a permu-

tation which is the composition of a 3-cycle and a 2-cycle (so, which has order510

6), then the instances of the pattern are modelled by 0112. Putting all these

together, we obtain that the instances of the pattern are all modelled by the set

{k1, k3, k6, k12, k13}. By Lemma 6, we get that the pattern xπ2(x)π56(x)π33(x)

is unavoidable. �
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Thus, we have shown the following theorem.515

Theorem 7. The largest m such that all patterns xπi(x)πj(x)πk(x), with i, j, k >

0 and π morphic permutation, are avoidable in Σm is m = 4.

5. Eventually unavoidable patterns

In the final section of this paper, we show that for all n ≥ 1 there exists

a pattern under permutations of length n and an alphabet Σ such that the520

respective pattern is unavoidable over Σ.

Let n be a positive integer, and let ij be non-negative integers, 0 ≤ j ≤ n−1.

Consider the unary pattern of length n given by

P = πi1(x)πi2(x) · · ·πin−1(x)πin(x).

We say that P is eventually unavoidable if there exists an integer N such

that, whenever Σ is an alphabet with |Σ| ≥ N , and w ∈ Σn, there is a permu-

tation π of Σ and a letter a ∈ Σ, such that

w = πi1(a)πi2(a) · · ·πin−1(a)πin(a).

Theorem 8. Let n be a non-negative integer. There is an eventually unavoid-

able pattern of length n.

Proof. Consider all partitions of {1, 2, . . . , n} into non-empty subsets; there

are Bn of these, where Bn is the nth Bell number. Let the rth such partition

be

Pr = 〈A1,r, A2,r, . . . , Ajr,r〉,

where {1, 2, . . . , n} = A1,r∪̇A2,r∪̇ · · · ∪̇Ajr,r. We may assume that the sets A`,r525

of the partition are ordered in increasing order of their least element.

For 1 ≤ k ≤ n, 1 ≤ r ≤ Bn, let qk,r be the integer such that k ∈ Aqk,r+1,r.

In other words, k is in the (qk,r + 1)st piece of the rth partition. Let pm denote

the mth prime number.
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For 1 ≤ k ≤ n, consider the system of congruences

ik ≡ qk,r( mod pr), 1 ≤ r ≤ Bn.

By the Chinese Remainder Theorem, choose ik satisfying these congruences.

(We remark in passing that i0 = 0 is always possible, since 1 is always in the

first piece of each partition, by our notational choice.) Let

P = πi1(x)πi2(x) · · ·πin−1(x)πin(x).

Let N = pBn . Suppose |Σ| ≥ N , and w ∈ Σn.530

Suppose w contains exactly m distinct letters; say w ∈ Tn, where |T | = m.

Let f : T → {1, 2, . . . ,m} be given by f(x) = ` if x first occurs on position i of

w and the number of distinct letters occuring in the length i− 1 prefix of w is

exactly ` − 1. For instance, if T = {a, b, c}, and w = aacababb, then f(a) = 1,

f(b) = 3, and f(c) = 2. In other words, f−1 encodes the order in which the535

letters of T occur in w.

We canonically extend f to a morphism f : T ∗ → {1, . . . ,m}∗. In our

previous example, f(w) = 11213133. Note that the first letter of f(w) is always

1.

We will show that there is a permutation π ∈ SN , such that

f(w) = πi1(1)πi2(1) · · ·πin−1(1)πin(1).

The desired result follows, replacing π by f−1πf .540

To find the permutation π, let P = 〈A1, A2, . . . Am〉, where ` ∈ Aj if and

only if the `th letter of f(w) is j. For some r, P = Pr. Since m, pr ≤ pBn
= N ,

SN will contain a pr-cycle, π such that π = (1, 2, . . . ,m, . . .). Here the elements

other than the first m can be arbitrary distinct elements of {m+1,m+2, . . . , N}.

Now πj(1) = j + 1, j = 0, 1, . . . ,m − 1. Since π is a pr-cycle, if ik ≡545

qk,r(modulo pr), then πik(1) = πqk,r (1) = qk,r + 1.

The kth letter of πi1(1)πi2(1) · · ·πin−1(1)πin(1) is πik(1), which is qk,r + 1.

However, by definition of the qk,r, this means that k is in the (qk,r + 1)st piece

of P . By the definition of P , the kth letter of f(w) is qk,r + 1. Since k was
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arbitrary, we conclude that πi1(1)πi2(1) · · ·πin−1(1)πin(1) = f(w), as claimed.550

�

Example 1. Let n = 3. The partitions of {1, 2, 3} are

P1 = 〈{1, 2, 3}〉, P2 = 〈{1}, {2, 3}〉, P3 = 〈{1, 2}, {3}〉,

P4 = 〈{1, 3}, {2}〉, P5 = 〈{1}, {2}, {3}〉.

This gives

q1,1 = 0, q2,1 = 0, q3,1 = 0, q1,2 = 0, q2,2 = 1, q3,2 = 1,

q1,3 = 0, q2,3 = 0, q3,3 = 1, q1,4 = 0, q2,4 = 1, q3,4 = 0,

q1,5 = 0, q2,5 = 1, q3,5 = 2.

As mentioned, we can always choose i1 = 0. For i2, we get these congruences:

i2 ≡ 0 ( mod 2), i2 ≡ 1 ( mod 3), i2 ≡ 0 ( mod 5),

i2 ≡ 1 ( mod 7), i2 ≡ 1 ( mod 11).

and i2 = 2080 is the smalleast integer solution.555

For i3, we get these congruences:

i3 ≡ 0 ( mod 2), i3 ≡ 1 ( mod 3), i3 ≡ 1 ( mod 5),

i3 ≡ 0 ( mod 7), i3 ≡ 2 ( mod 11).

and i3 = 1036 is the smalleast integer solution.

We conclude that xπ2080(x)π1036(x) is eventually unavoidable. As soon as

|Σ| ≥ 11, any length 3 word encounters this pattern. For example, to see that

w = aba encounters the pattern, we look at f(w) = 121, and the partition

P = 〈{1, 3}, {2}〉 = P4. We thus let π be a 7-cycle π = (1, 2, . . .). Now

π2080(1)=π2080( mod 7)(1)=π(1)=2, while π1036(1)=π1036( mod 7)(1)=π0(1)=1,

so that π0(1)π2080(1)π1036(1) = 121 ∼ aba. �

By Theorem 8 the following result is immediate.
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Theorem 9. Let n be a non-negative integer. There exists a pattern P of length560

n and an integer N such that for all alphabets Σ with |Σ| ≥ N , the pattern P

is unavoidable over Σ.

This last theorem highlights the main open problem of this work. Each

pattern under anti-/morphic permutations is avoidable in Σ3, but some patterns

become unavoidable for larger alphabets. Is there a way to determine exactly,565

for a given pattern P which are the alphabets Σk in which it is avoidable? Note

that such a result was obtained in [8] for cubic patterns.
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