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Abstract
Increased phosphorus (P) availability under flooded, anaerobic conditions may accel-

erate P loss from soils to water bodies. Existing knowledge on P release to floodwater

from flooded soils is limited to summer conditions and/or room temperatures. Spring

snowmelt runoff, which occurs under cold temperatures with frequent freeze–thaw

events, is the dominant mode of P loss from agricultural lands to water bodies in the

Canadian Prairies. This research examined the effects of temperature on P dynam-

ics under flooded conditions in a laboratory study using five agricultural soils from

Manitoba, Canada. The treatments were (a) freezing for 1 wk at −20 ◦C, thawing and

flooding at 4 ± 1 ◦C (frozen, cold); (b) flooding unfrozen soil at 4 ± 1 ◦C (unfrozen,

cold); and (c) flooding unfrozen soil at 20 ± 2 ◦C (warm). Pore water and surface

water were collected weekly over 8 wk and analyzed for dissolved reactive phosphorus

(DRP), pH, calcium, magnesium, iron (Fe), and manganese (Mn). Soils under warm

flooding showed enhanced P release with significantly higher DRP concentrations in

pore and surface floodwater compared with cold flooding of frozen and unfrozen soils.

The development of anaerobic conditions was slow under cold flooding with only a

slight decrease in Eh, whereas under warm flooding Eh declined sharply, favoring

reductive dissolution reactions releasing P, Fe, and Mn. Pore water and floodwater

DRP concentrations were similar between frozen and unfrozen soil under cold flood-

ing, suggesting that one freeze–thaw event prior to flooding had minimal effect on P

release under simulated snowmelt conditions.

1 INTRODUCTION

Phosphorus (P) loss from agricultural soils via runoff, leach-

ing, and erosion is a major contributor of P to aquatic sys-

tems (King et al., 2015; Smith et al., 2015). This is an envi-

ronmental concern because P is the most limiting nutrient for

freshwater eutrophication (Schindler, 1977; Schindler, Car-

Abbreviations: DAF, days after flooding; DRP, dissolved reactive

phosphorus.
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penter, Chapra, Hecky, & Orihel, 2016; Schindler, Hecky,

& McCullough, 2012). Both the release and mobilization

of P from soils are regulated by various biogeochemical

and hydrological processes. When soils are flooded for pro-

longed periods, the development of anaerobic conditions

changes the chemistry of soils, often through microbially

mediated reactions. These reactions may enhance the release

and mobilization of P to overlying floodwater and thus

accelerate P loss from soils to water bodies (Amarawan-

sha, Kumaragamage, Flaten, Zvomuya, & Tenuta, 2015;
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Jayarathne, Kumaragamage, Indraratne, Flaten, & Goltz,

2016; Tian, Dong, Karthikeyan, Li, & Harmel, 2017). This

effect has been mostly attributed to the reductive dissolu-

tion of iron (Fe) and manganese (Mn) constituents releasing

adsorbed and/or precipitated phosphates (Amarawansha et al.,

2015; Young & Ross, 2001).

In the Canadian Prairies, dissolved P in snowmelt runoff is

the dominant source of P exported from watersheds to surface

waters (Corriveau, Chambers, & Culp, 2013; Tiessen et al.,

2010). During the snowmelt period, vegetation and soils are

subjected to repeated freeze–thaw cycles of varying durations

(Liu et al., 2019b). Snowmelt events in the Canadian Prairies

are also characterized by flooding because the quick snowmelt

process generates high volumes of snowmelt runoff, in com-

bination with slow water infiltration through frozen soils (Liu

et al., 2019a) and poor surface drainage due to the relatively

flat landscape (Bedard-Haughn, 2009; Buttle et al., 2016).

Each spring the duration of flooding on fields may range from

a few days to several weeks.

Most of the documented evidence on enhanced P release

from soils to floodwater has focused on summer flooding con-

ditions and/or flooding under room temperatures (Amarawan-

sha et al., 2015; Dharmakeerthi, Kumaragamage, Indraratne,

& Goltz, 2019b; Tian et al., 2017). The magnitudes of P

release from flooded soils under spring snowmelt conditions

or cold temperatures are poorly represented in the litera-

ture (King et al., 2015). In a previous study by Sallade and

Sims (1997), P released from flooded sediments at 7 ◦C was

found to be significantly lower than at 35 ◦C. Dharmakeerthi,

Kumaragamage, Goltz, and Indraratne (2019a) reported sig-

nificantly lower P release to pore water and floodwater from

flooded soils under simulated spring snowmelt (previously

frozen soils flooded at 4 ◦C) compared with simulated sum-

mer (unfrozen soils flooded at 22 ◦C) flooding. However, it is

uncertain whether the decreased P release was caused by the

lower temperature during flooding, the freezing event prior to

flooding, or both. The objective of this study was to further

investigate the effects of cold temperatures with and with-

out freezing on P release from flooded soils to pore water

and floodwater using soils typically found in the Canadian

prairies. The potential for anaerobic conditions to develop

under flooded conditions should still exist under cold tem-

peratures with freezing events; however, we hypothesized

that low temperature and freeze–thaw events would reduce

P release from flooded soils when compared with summer

flooding conditions.

2 MATERIALS AND METHODS

2.1 Soil collection and analysis

Five surface (0–15 cm layer) agricultural soils were col-

lected from different sampling sites in the Red River

Core Ideas
• P release from flooded soils was greater under

warm than cold temperatures.

• Floodwater DRP concentrations were much

greater under warm than under cold flooding.

• Development of anaerobic conditions in soils was

very slow under cold flooding.

• Redox reactions responsible for P release were less

dominant under cold flooding.

• One pre-flood freezing event had minimal effect

on P release under cold flooding.

Valley and Interlake Region in Manitoba, Canada. Soils

belonged to Eigenhof (Orthic Black Chernozem), Red River

(Gleyed Rego Black Chernozem), Osborne (Rego Humic

Gleysol), Fairford (Eluviated Eutric Brunisol), and Bal-

moral (Rego Humic Gleysol) series according to the Cana-

dian system of classification (Canadian Agricultural Services

Coordinating Committee, 1998), with U.S. soil taxonomy

equivalents of Typic Cryoboroll, Aeric Calciaquoll, Histic

Calciaquoll, Eutrochrepts, and Histic Calciaquoll (Soil Sur-

vey Staff, 2014), respectively. Approximately 10–12 sam-

ples were obtained from each site and combined to obtain a

composite soil sample. Composite soil samples were passed

through a 10-mm mesh screen and stored at room temperature

under field moisture conditions before initiating the exper-

iment. A representative subsample from each soil was air-

dried and sieved (2-mm mesh). Soils were analyzed for pH

(1:2.5 soil/water) using a Fisher Accumet AB15 pH meter

(Fisher Scientific) and texture by the pipette method (Gee &

Bauder, 1986). Soil test P was determined using the Olsen

method (Olsen, Cole, Watanabe, & Dean, 1954); soils were

extracted with 0.5 mol L−1 NaHCO3 solution at pH 8.5 and

P concentrations in filtered extracts were determined by the

molybdate blue color method (Murphy & Riley, 1962), mea-

suring the absorbance at the 882-nm wavelength using an

Ultraspec 500 pro UV/visible spectrophotometer (Biochrom).

Total P was determined using the H2SO4–H2O2 digestion

method (Parkinson & Allen, 1975), and the P concentra-

tion in the digested solution was measured by inductively

coupled plasma atomic emission spectroscopy (iCAP 6500,

Thermo Scientific). A single point P sorption study was con-

ducted by equilibrating a soil sample with a solution contain-

ing 150 mg P L−1 (Amarawansha, Kumaragamage, Flaten,

Zvomuya, & Tenuta, 2016) and calculating the P sorption

capacity using the difference between the initial and equilib-

rium solution P concentrations. The degree of P saturation

was calculated by expressing Olsen P as a percentage of P

sorption capacity (Amarawansha et al., 2016; Kumaragamage

et al., 2019). Organic matter and calcium carbonate equivalent



702 KUMARAGAMAGE ET AL.

were also analyzed using a modified loss on ignition method

(Dean, 1974). Cation exchange capacity was determined

by displacing all cations by Na+ and subsequently extract-

ing Na+ and measuring the Na concentration in the extract

(Hesse, 1971) using atomic emission spectroscopy (AAnalyst

400, PerkinElmer).

2.2 Incubation study under simulated
snowmelt and summer flooding conditions

Field-moist soils were packed into 1.5-L glass incubation ves-

sels with 10 cm internal diameter (nine vessels for each soil)

to a depth of 7 cm and a bulk density of 1.1 ± 0.05 g cm−3.

A Rhizon-flex pore water sampler with an outer diameter of

2.5 mm and 0.15 mm pore size (Rhizosphere Research Prod-

ucts) was installed at 5-cm depth in each incubation vessel

during soil packing to extract pore water. An Eh probe with a

platinum sensor (Paleo Terra) was installed at a depth of 5 cm

to monitor the changes in Eh in each vessel during flooding.

Of the nine vessels for each soil, for 1 wk three were frozen at

−20 ◦C, another three were kept at 4 ± 1 ◦C, and the remain-

ing three were kept at 20 ± 1 ◦C. The vessels with frozen soils

were thawed for 3 d at 4 ± 1 ◦C and then flooded using cool,

deionized water (18 MΩ cm, Millipore) to a 5-cm ponding

depth and incubated under cold temperature (4 ± 1 ◦C) for 56

d (frozen, cold treatment). It should be noted, however, that

under natural field conditions, freezing occurs only from the

surface, whereas in the experimental setup, the vessels were

exposed to low-temperature conditions from all directions,

which may influence the rapidness of freezing and the soil

temperatures. We selected −20 ◦C for freezing and +20 ◦C to

simulate summer flooding based on the typical temperatures

for the winter and the summer seasons in the region. The sec-

ond set of vessels that were not frozen but kept under cold

temperature were flooded similarly and incubated at 4 ± 1 ◦C

for the 56-d flooding period (unfrozen, cold treatment). The

third set of vessels with unfrozen soils were flooded with

deionized water to a 5-cm ponding depth and incubated under

warm temperatures (20 ± 2 ◦C) for 56 d (warm treatment).

During incubation, all vessels were kept covered with perfo-

rated Parafilm M (Fisher Scientific) to minimize evaporation.

The experiment was conducted using a randomized complete

block design with three replicates.

Redox potential was determined at 5 cm depth on the day

of flooding and thereafter at 7-d intervals by temporarily

inserting a reference electrode (Ag/AgCl saturated with KCl,

coupled to a permanently installed Pt redox probe) into flood-

water just enough to reach the soil surface. On the day of the

flooding and thereafter at 7-d intervals, pore water and flood-

water samples were taken from each vessel. Samples of pore

water were taken using a 20-ml syringe attached to the end

of the Rhizon flex sampler. Floodwater was extracted using

a 20-ml syringe from the center of the vessel and immedi-

ately filtered through a 0.45-μm membrane filter. Pore water

samples were immediately analyzed for dissolved reactive

P (DRP) concentration. Floodwater samples were analyzed

within 6 h using the molybdate blue color method (Murphy

& Riley, 1962), and absorbance was measured using an Ultra-

spec 500 pro UV-visible spectrophotometer (Biochrom). All

water samples were analyzed for pH (Fisher Accumet pH

meter) within 24 h of sampling. Total Ca, Mg, Fe, and Mn

concentrations were determined using flame atomic absorp-

tion spectroscopy (AAnalyst 400, Perkin Elmer).

2.3 Statistical analysis

Analysis of variance for pore water and floodwater DRP con-

centrations was performed for each soil separately using

the GLIMMIX procedure in SAS Version 9.4 (SAS Insti-

tute, 2018) with flooding treatment (Frozen cold, Unfrozen

cold, and Warm) as the fixed effect, replicates as blocks,

and days after flooding (DAF) as the repeated measures fac-

tor. Based on the Akaike information criterion (Littell, Henry,

& Ammerman, 1998), the covariance structure used in the

final mixed models was heterogeneous compound symmetry,

and the DRP concentrations were modeled as lognormal dis-

tribution. The Tukey multiple comparison procedure was used

to compare least square means when three or more treatment

means were compared. Simple linear regression analysis was

performed separately for each soil and flooding treatment to

identify the relationships between floodwater DRP and soil

Eh, pore water and floodwater pH, and cation concentrations

in pore water and floodwater. For all statistical analyses, sig-

nificance was determined at α = .05.

3 RESULTS

3.1 Initial soil properties

Initial soil properties are presented in Supplemental Table S1.

All soils were slightly alkaline (pH 6.5–7.5). Clay content var-

ied from 360 to 780 g kg−1, giving textures of clay to clay

loam. All soils had medium to high organic matter contents

ranging from 47 to 71 g kg−1. The calcium carbonate equiv-

alent ranged from 23 to 124 g kg−1, indicating that the stud-

ied soils were weakly to moderately calcareous. The cation

exchange capacity values were moderate, ranging from 21.6

to 33.0 cmolc kg−1. The Olsen P concentrations ranged from

28.5 to 69.8 mg kg−1, and total P in soil ranged from 701 to

1066 mg kg−1. Phosphorus sorption capacity ranged from 452

to 756 mg kg−1, resulting in a high variability in degree of P

saturation from 6.3% in Fairford and Balmoral series to 12%

in Red River series.
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F I G U R E 1 Change in mean soil redox potential (Eh, mV) with

flooding time for different flooding treatments (unfrozen soils flooded

under warm and cold temperatures, and frozen soils flooded under cold

temperatures). The vertical bars at each week indicate the standard

error of mean (n = 3)

3.2 Effect of flooding conditions on soil redox
potential changes with flooding time

Soil Eh measured at the 5-cm depth ranged from 220 to

506 mV on the day of flooding and decreased with time of

flooding; the magnitude of decrease was largely influenced

by the flooding treatment (Figure 1). During the initial stages

of flooding for up to ≈7–21 DAF (depending on the soil),

similar Eh values were observed under different flooding

treatment. Beyond 21 DAF, Eh values in all soils declined

sharply with warm-temperature flooding. However, Eh val-

ues in both unfrozen and frozen soils under cold-temperature

flooding decreased only slightly or remained relatively stable

(Figure 1). By the end of the flooding period, soil Eh under

warm flooding dropped to values between 0 and −88 mV,

whereas Eh under cold flooding of unfrozen and frozen

soils remained in the ranges of 213–243 and 139–273 mV,

respectively. Whereas the Eh values beyond 28 DAF in all

soils were lower under warm flooding than the corresponding

Eh values under cold flooding, the Eh values among frozen

0

4

8

12

DR
P 

(m
g 

L-1
) Eigenhof series Warm

Unfrozen, cold
Frozen, cold

0

3

6

DR
P 

(m
g 

L-1
) Red River series

0

2

4

DR
P 

(m
g 

L-1
) Osborne series

0

2

4

DR
P 

(m
g 

L-1
) Fairford series

0

2

4

0 7 14 21 28 35 42 49 56

DR
P 

(m
g 

L-1
)

Days a�er flooding (DAF)

Balmoral series

DF P value
DAF 8 <0.0001
Trt 2 <0.0001
DAF × Trt 16 0.0015

DF P value
DAF 8 <0.0001
Trt 2 <0.0001
DAF × Trt 16 <0.0001

DF P value
DAF 8 <0.0001
Trt 2 <0.0001
DAF × Trt 16 0.90

DF P value
DAF 8 <0.0001
Trt 2 <0.0001
DAF × Trt 16 <0.0001

DF P value
DAF 8 <0.0001
Trt 2 <0.0001
DAF × Trt 16 0.03

F I G U R E 2 Change in dissolved reactive P (DRP) concentrations

(geometric least squares mean) in pore water with flooding time for

different flooding treatments (unfrozen soils flooded under warm and

cold temperatures, and frozen soils flooded under cold temperatures).

Vertical bars at each week indicate SEM (n = 3). Trt, treatment

and unfrozen soils flooded under cold temperatures were sim-

ilar (Figure 1).

3.3 Dissolved reactive phosphorus
concentration changes in pore water and
floodwater with flooding time under different
flooding conditions

During the initial stage of flooding (up to about 28 DAF),

the pore water DRP concentrations steadily increased in all

soils irrespective of the flooding treatment (Figure 2). There-

after, the pore water DRP concentration either decreased,

remained relatively stable, or continued to increase, depend-

ing on the soil and the flooding treatment. For pore water DRP

concentrations, the two-way interaction of flooding treat-

ment × DAF was significant (P < .05) in all but the Osborne
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F I G U R E 3 Change in dissolved reactive P (DRP) concentrations

(geometric least squares mean) in floodwater with flooding time for

different flooding treatments (unfrozen soils flooded under warm and

cold temperatures, and frozen soils flooded under cold temperatures).

Vertical bars at each week indicate SEM (n = 3). Trt, treatment

soil; however, even in Osborne soil, the main effects of DAF

and flooding treatment were highly significant (P < .0001).

Under warm flooding, the pore water DRP concentration in

general, increased substantially and significantly in all soils;

however, under cold flooding of frozen and unfrozen soils,

pore water DRP concentrations remained relatively stable or

increased only slightly beyond 28 DAF. In most soils, pore

water DRP continued to increase from 28 DAF to 56 DAF.

However, the exception was the Eigenhof soil, for which pore

water DRP concentration decreased beyond 28 DAF with

warm flooding (Figure 2).

Floodwater DRP concentrations showed a sharp increase

up to 7 DAF and then continued to increase at a slower rate in

most soils under the different flooding treatment (Figure 3).

In Balmoral and Fairford soils, a slight decrease in floodwa-

ter DRP concentrations was observed from 14 to 35 DAF

for unfrozen and frozen soils flooded under cold tempera-

tures, but concentrations increased again after 35 DAF. The

DRP concentrations were significantly (P < .05) greater under

warm than under cold flooding in both pore water (Figure 2)

and floodwater (Figure 3), with a few exceptions. The excep-

tions were pore water DRP concentration in Eigenhof soil

from 35 to 56 DAF and Fairford soil during 0–14 DAF.

3.4 Changes in pore water and floodwater
cation concentrations with flooding time under
different flooding conditions

Pore water concentration changes with time of flooding

showed a similar trend for Ca and Mg (Table 1). Under warm

flooding of unfrozen soils, the concentrations remained sta-

ble or slightly declined up to about 21–28 DAF and thereafter

steadily increased with DAF in all except Osborne soil, where

the concentrations remained relatively stable. The increase

was largest in Fairford soil, with about twofold increase in

pore water Ca and Mg concentrations at 56 DAF compared

with respective concentrations at 0 DAF. In acidic Eigenhof

soil, the concentrations decreased significantly up to 21–28

DAF and then increased, reaching concentrations similar to

those at 0 DAF by 56 DAF. In contrast to warm flooding,

pore water Ca concentrations under cold flooding of frozen

and unfrozen soils increased to 7 DAF and then decreased

with time of flooding. Pore water Mg concentrations fluctu-

ated during the first 28 DAF and then decreased in most soils.

Pore water Fe and Mn concentrations were below

detectable levels (0.05 and 0.16 mg L−1 for Fe and Mn,

respectively) in soils flooded under cold conditions. When

flooded under warm conditions, detectable concentrations

were observed, but only at latter stages of flooding. Under

warm flooding, pore water Fe concentrations were detectable

at 35 DAF in Red River and Fairford soils, whereas pore water

Mn concentrations were detectable at 14 DAF in Fairford soil;

at 28 DAF in Red River soil; and at 35 DAF in Eigenhof,

Osborne, and Balmoral soils (Table 1).

Floodwater Ca and Mg concentrations increased with

DAF in general, under all flooding conditions, with greater

increases under warm flooding than cold flooding (Table 2).

Floodwater concentrations of Fe and Mn were at less than

detectable levels for all soils under all flooding conditions

(Table 2).

3.5 Changes in pore water and floodwater pH
with flooding time under different flooding
conditions

Pore water pH values tended to decrease in the four alkaline

soils after about 28 DAF under warm flooding but increased

throughout the flooding period in slightly acidic Eigenhof

soil; thus, by the end of the flooding period, all soils had sim-

ilar pore water pH values in the range of 6.9–7.3 (Supplemen-

tal Table S2). However, pore water pH increased with DAF in
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T A B L E 1 Concentrations of pore water Ca, Mg, Fe, and Mn (mean, n = 3) over the flooding period for unfrozen soils flooded under warm and

cold temperatures, and frozen soils flooded under cold temperatures

Warm flooding of frozen soils
Cold flooding of
unfrozen soils

Cold flooding of frozen
soils

Soil DAF Ca Mg Fe Mn Ca Mg Ca Mg
mg L−1

Eigenhof 0 67 (7.4) 36 (4.4) ND ND 47 (9.8) 31 (7.5) 41 (2.3) 34 (1.1)

7 66 (6.3) 21 (4.3) ND ND 67 (7.4) 19 (4.2) 87 (7.0) 30 (0.9)

14 43 (3.9) 27 (2.4) ND ND 51 (8.0) 23 (3.3) 74 (0.3) 35 (3.2)

21 36 (3.2) 25 (1.5) ND ND 51 (3.3) 28 (2.3) 56 (6.0) 42 (2.8)

28 40 (3.7) 17 (1.1) ND ND 51 (2.6) 19 (2.5) 61 (1.2) 30 (1.9)

35 47 (3.8) 22 (3.8) ND 0.4 (0.02) 42 (2.0) 16 (0.5) 50 (0.7) 24 (1.8)

42 53 (5.0) 27 (3.7) ND 1.2 (0.03) 43 (2.4) 22 (1.5) 48 (1.5) 23 (3.7)

49 60 (0.8) 30 (1.6) ND 2.4 (0.08) 39 (1.8) 17 (1.6) 45 (0.7) 22 (1.3)

56 69 (1.8) 37 (4.4) ND 4.3 (0.25) 38 (0.6) 18 (0.9) 45 (2.0) 21 (2.3)

Red River 0 67 (2.8) 44 (0.9) ND ND 39 (3.5) 25 (1.5) 55 (14.6) 36 (7.2)

7 87 (2.1) 31 (1.8) ND ND 89 (0.8) 30 (1.2) 100 (1.1) 36 (2.1)

14 71 (4.8) 37 (2.7) ND ND 75 (2.9) 38 (2.0) 92 (1.5) 42 (2.3)

21 72 (2.3) 45 (1.1) ND ND 66 (3.4) 40 (5.6) 81 (1.3) 47 (2.7)

28 87 (2.3) 38 (3.9) ND 0.3 (0.02) 67 (0.7) 27 (0.8) 80 (1.5) 37 (6.2)

35 94 (2.7) 50 (3.7) 0.1 (0.03) 0.8 (0.05) 60 (1.3) 33 (1.2) 69 (1.4) 32 (1.9)

42 107 (2.7) 67 (3.0) 0.9 (0.11) 1.7 (0.08) 58 (1.8) 28 (4.2) 66 (0.5) 35 (2.1)

49 129 (6.1) 71 (4.7) 3.2 (0.40) 3.4 (0.29) 55 (0.5) 28 (4.0) 63 (0.5) 33 (1.7)

56 146 (8.3) 93 (8.0) 6.7 (0.71) 4.9 (0.41) 53 (0.7) 23 (2.1) 61 (2.9) 27 (1.7)

Osborne 0 65 (2.3) 57 (0.6) ND ND 44 (2.1) 43 (1.8) 57 (7.9) 54 (3.4)

7 86 (2.1) 47 (1.8) ND ND 97 (2.5) 48 (3.2) 107 (6.3) 55 (3.3)

14 67 (4.0) 49 (1.2) ND ND 86 (2.8) 60 (1.7) 90 (6.3) 64 (4.4)

21 54 (2.4) 45 (3.2) ND ND 69 (2.0) 54 (1.4) 77 (4.9) 62 (5.4)

28 58 (1.1) 43 (4.0) ND ND 65 (3.7) 45 (2.0) 71 (3.2) 46 (3.3)

35 56 (1.1) 35 (2.6) ND 0.1 (0.02) 57 (1.8) 40 (1.2) 62 (3.4) 38 (2.7)

42 57 (0.4) 41 (1.7) ND 0.2 (0.04) 55 (0.8) 38 (5.1) 59 (1.1) 43 (2.1)

49 60 (0.8) 43 (3.1) ND 0.3 (0.04) 51 (1.6) 34 (3.3) 56 (0.8) 36 (1.8)

56 58 (2.0) 44 (1.7) ND 0.3 (0.04) 47 (0.6) 32 (2.9) 53 (1.1) 31 (2.5)

Fairford 0 99 (4.0) 48 (1.6) ND ND 91 (1.9) 49 (1.6) 68 (8.1) 39 (2.1)

7 115 (2.7) 33 (2.4) ND ND 128 (1) 41 (3.1) 104 (1.0) 32 (1.8)

14 103 (2.5) 45 (0.2) ND 0.3 (0.06) 106 (1) 48 (2.7) 92 (0.6) 40 (0.9)

21 113 (3.1) 60 (3.5) ND 2.1 (0.27) 90 (1.4) 45 (1.3) 80 (0.5) 41 (0.6)

28 149 (3.6) 76 (4.2) ND 5.6 (0.51) 83 (0.7) 41 (1.8) 78 (3.0) 33 (2.3)

35 160 (7.1) 92 (4.3) 5.7 (0.48) 8.1 (0.34) 74 (1.0) 31 (0.8) 71 (1.0) 28 (3.7)

42 166 (3.2) 101 (0.3) 8.8 (0.30) 10.4 (0.1) 69 (1.3) 33 (3.5) 68 (1.6) 32 (4.0)

49 223 (5.4) 104 (1.4) 11.5 (0.4) 11.2 (0.1) 65 (0.3) 27 (0.7) 71 (4.6) 34 (2.8)

56 232 (4.1) 120 (6.4) ND 13.5 (0.5) 62 (0.4) 23 (2.1) 65 (0.5) 31 (2.3)

Balmoral 0 64 (5.3) 58 (1.9) ND ND 61 (6.8) 52 (3.8) 39 (8.4) 45 (2.7)

7 91 (0.5) 40 (3.9) ND ND 99 (1.2) 51 (3.4) 89 (2.3) 49 (1.3)

14 72 (2.7) 50 (1.0) ND ND 84 (0.9) 59 (3.3) 73 (1.0) 52 (3.4)

21 62 (1.1) 51 (4.5) ND ND 69 (1.2) 56 (0.8) 63 (1.3) 49 (1.8)

28 70 (2.6) 48 (0.7) ND ND 63 (2.4) 39 (2.3) 62 (0.4) 45 (1.0)

35 76 (0.7) 51 (4.1) ND 0.2 (0.01) 56 (1.1) 37 (2.1) 55 (0.4) 37 (3.1)

(Continues)
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T A B L E 1 (Continued)

Warm flooding of frozen soils
Cold flooding of
unfrozen soils

Cold flooding of frozen
soils

Soil DAF Ca Mg Fe Mn Ca Mg Ca Mg
mg L−1

42 87 (1.0) 69 (0.5) ND 0.5 (0.02) 49 (1.5) 36 (5.0) 51 (0.8) 40 (3.5)

49 99 (1.1) 71 (3.8) ND 0.9 (0.04) 48 (0.5) 36 (3.0) 48 (0.6) 35 (1.8)

56 113 (3.0) 85 (3.4) ND 1.6 (0.01) 47 (0.9) 31 (3.4) 49 (0.2) 33 (1.0)

Note. Iron and Mn were not detectable under cold flooding. DAF, days after flooding. Standard error of mean in parentheses. ND, not detectable.

all soils flooded under cold temperatures (Supplemental Table

S2). Floodwater pH values immediately after flooding ranged

around 6.0–6.5 in all soils and increased with flooding time in

all soils, with greater increases under warm than cold flooding

of unfrozen or frozen soils (Supplemental Table S3).

4 DISCUSSION

4.1 Change in soil redox potential with
flooding time and its influence on phosphorus
release from soils

Relative to warm temperatures, the slower rate and degree

of Eh reduction with time of flooding under cold tempera-

tures is expected. Previous studies have suggested that redox

reactions in flooded soils are microbially mediated (Ponnam-

peruma, 1972; Stres et al., 2008) and thus would be slower

under cold conditions that impair microbial activity (Jefferies,

Walker, Edwards, & Dainty, 2010; Stres et al., 2008). As such,

the slower rate and degree of Eh reduction with time of flood-

ing under cold compared with warm temperatures (Figure 1)

are consistent with changes in microbially mediated redox

reactions, although microbial activity was not measured for

the current study. Previous research has indicated that freeze–

thaw cycles can disrupt microbial activity (Jefferies et al.,

2010), although that does not appear to have happened for

this study because the Eh values with flooding were similar

in frozen and unfrozen soils.

With the decrease in Eh, the pore water DRP concentrations

often increased in most soils; however, in some soils, pore

water DRP concentrations either decreased or remained rela-

tively stable. Similar differences in pore water DRP concen-

trations with DAF among different soils have been previously

reported under summer flooding (or room temperature) con-

ditions (Amarawansha et al., 2015; Jayarathne et al., 2016). In

the current study, flooding treatment significantly influenced

the change in pore water DRP concentration with time (DAF).

As observed in previous studies (Jayarathne et al., 2016;

Smith & Jacinthe, 2014), the initial increase in DRP con-

centrations in pore water and floodwater with DAF, prior to

the intensive reduction in soils, is likely caused by disso-

lution reactions of sparing soluble P compounds. Once the

soils became anaerobic, reductive dissolution reactions may

have continued to release P from adsorbed and precipitated

pools, as evidenced by the continued increase in pore water

and floodwater DRP concentrations in samples flooded under

warm temperatures. The influence of reductive dissolution

reactions on P release is clearly documented in the literature

(Amarawansha et al., 2015; Jayarathne et al., 2016; Maran-

guit, Guillaume, & Kuzyakov, 2017), with reduction of Fe

and Mn compounds playing a significant role through vari-

ous mechanisms. Reactions may include reductive dissolution

of ferric and manganese phosphates as previously reported

for calcareous soil from the same region (Jayarathne et al.,

2016) as well as reductive dissolution of ferric oxides releas-

ing adsorbed and occluded P (Rakotoson, Rabeharisoa, &

Smolders, 2016). Under warm flooding, the decrease in pore

water DRP concentrations in Eigenhof soil beyond 28 DAF

with a consistent increase in floodwater DRP concentrations

may be a result of rapid diffusion of P from pore water to sur-

face floodwater because of the sandy nature of the soil. It was

also noted that pore water DRP concentrations exceeded 7 mg

L−1 by 28 DAF in Eigenhof soil under warm flooding, which

may favor reprecipitation reactions with cations such as Ca

and Mg, whereas in other soils, pore water DRP concentra-

tions were well below 3 mg L−1 during most of the flooding

period.

Our results suggest that P release with flooding is mostly

through redox-induced reactions. Severe reduced status with

very low Eh values under warm flooding resulted in greater

P release to floodwater. Microbial reduction of Fe3+ to Fe2+

takes place when soil Eh falls below ∼100 mV (Gotoh

& Patrick, 1974), whereas reduction of Mn4+ to Mn2+

takes place at higher Eh than Fe3+ reduction (Amarawansha

et al., 2015; Patrick & Jugsujinda, 1992). A severe reduc-

ing environment causing release of Mn2+ and Fe2+ was not

observed for all soils under unfrozen, cold flooding and

for all but Fairford soil under frozen, cold flooding; thus,

redox-induced P release was not favored under cold flood-

ing of both frozen and unfrozen soils. We can speculate that

the low temperatures with or without a freeze–thaw event

may have influenced microbially mediated redox transforma-

tions through their effect on biological activity, as reported

previously (Campbell, Mitchell, Groffman, Christenson, &

Hardy, 2005; Lipson, Schadt, & Schmidt, 2002). This is
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T A B L E 2 Concentrations of floodwater Ca and Mg (mean, n = 3) over the flooding period for unfrozen soils flooded under warm and cold

temperatures, and frozen soils flooded under cold temperatures

Warm flooding of frozen soils Cold flooding of unfrozen soils Cold flooding of frozen soils
Soil DAF Ca Mg Ca Mg Ca Mg

mg L−1

Eigenhof 0 0.5 (0.29) 1.4 (0.33) 0.8 (0.64) 1.4 (0.44) 0.2 (0.06) 0.9 (0.34)

7 10.9 (1.55) 5.6 (0.19) 3.2 (0.76) 2.7 (0.46) 0.6 (0.19) 1.0 (0.17)

14 13.1 (0.30) 8.2 (0.10) 8.1 (1.56) 4.3 (0.68) 2.1 (1.00) 2.7 (0.31)

21 10.5 (0.69) 9.0 (0.28) 5.9 (0.86) 6.1 (0.65) 6.1 (1.84) 4.8 (0.44)

28 14.4 (2.77) 8.5 (0.38) 14.1 (3.48) 7.6 (1.03) 5.9 (0.32) 5.2 (0.09)

35 18.4 (2.56) 10.4 (0.37) 17.7 (2.63) 8.1 (0.59) 19.1 (1.58) 6.9 (0.41)

42 18.0 (1.30) 10.8 (1.10) 15.5 (3.19) 7.6 (0.77) 17.1 (1.38) 8.2 (0.52)

49 20.5 (0.42) 13.0 (0.49) 20.1 (1.48) 12.3 (1.60) 19.4 (0.24) 8.8 (1.72)

56 18.5 (2.38) 8.5 (0.37) 16.0 (2.86) 7.8 (1.71) 16.1 (1.97) 10.2 (0.94)

Red River 0 1.9 (0.86) 2.9 (0.77) 2.4 (0.89) 2.3 (0.22) 2.2 (0.51) 3.3 (0.66)

7 23.3 (1.69) 4.9 (1.11) 12.8 (0.70) 5.5 (0.57) 4.1 (0.50) 3.3 (0.14)

14 26.6 (3.92) 15.2 (1.35) 19.4 (1.30) 8.8 (0.37) 12.8 (1.51) 7.8 (0.64)

21 23.6 (2.60) 17.3 (0.83) 17.0 (1.54) 10.5 (0.20) 14.0 (1.19) 8.6 (0.07)

28 33.3 (0.31) 15.9 (1.58) 28.9 (2.00) 10.9 (1.08) 21.9 (1.97) 11.0 (1.50)

35 35.5 (0.46) 19.2 (0.89) 24.4 (0.70) 9.9 (0.92) 24.0 (0.70) 9.5 (0.90)

42 41.2 (1.41) 25.2 (0.85) 25.4 (0.31) 13.8 (0.35) 24.6 (0.44) 14.8 (1.32)

49 49.1 (1.25) 29.7 (0.39) 26.7 (0.44) 14.0 (0.68) 26.5 (0.87) 12.9 (1.50)

56 51.6 (0.89) 29.2 (0.34) 25.8 (0.13) 12.1 (1.33) 24.9 (0.98) 12.5 (1.19)

Osborne 0 1.8 (0.50) 3.5 (0.34) 2.6 (1.20) 2.8 (0.75) 0.2 (0.05) 1.1 (0.08)

7 18.8 (2.12) 10.3 (0.80) 7.7 (1.29) 6.5 (0.42) 12.2 (8.18) 4.8 (0.79)

14 32.1 (2.50) 26.1 (1.60) 16.0 (3.30) 12.9 (1.47) 15.6 (5.37) 9.9 (1.51)

21 25.4 (2.50) 25.1 (2.21) 14.7 (0.77) 15.4 (1.11) 14.1 (1.78) 14.0 (1.01)

28 30.9 (0.96) 26.6 (2.45) 22.4 (2.97) 15.4 (1.50) 23.6 (0.59) 15.5 (0.96)

35 32.3 (1.03) 21.9 (0.17) 26.1 (0.82) 17.6 (0.47) 25.4 (0.59) 16.3 (0.48)

42 28.6 (1.04) 24.4 (0.99) 25.5 (0.79) 18.2 (1.29) 24.7 (1.46) 20.2 (0.61)

49 31.9 (0.11) 28.1 (1.29) 25.9 (1.58) 20.6 (1.95) 29.5 (0.89) 22.1 (1.68)

56 32.1 (0.69) 22.4 (1.93) 26.8 (0.54) 17.0 (0.71) 23.8 (1.68) 17.8 (1.96)

Fairford 0 0.5 (0.13) 1.7 (0.27) 1.0 (0.43) 1.3 (0.36) 0.2 (0.07) 0.7 (0.18)

7 19.0 (2.04) 4.1 (0.38) 3.8 (0.27) 1.8 (0.12) 2.0 (0.50) 1.8 (0.40)

14 32.5 (2.93) 14.9 (1.03) 18.4 (1.17) 6.9 (0.42) 19.1 (3.70) 7.4 (0.16)

21 33.3 (1.68) 15.4 (0.92) 15.9 (1.54) 8.6 (0.33) 16.8 (1.24) 8.2 (0.23)

28 42.7 (1.36) 16.6 (0.56) 25.0 (0.60) 10.1 (1.66) 23.0 (0.29) 9.2 (1.40)

35 46.8 (0.58) 20.9 (1.18) 25.9 (0.30) 11.6 (1.24) 26.3 (1.97) 9.3 (0.97)

42 52.6 (0.62) 26.6 (0.34) 25.8 (1.15) 11.9 (0.60) 22.5 (2.83) 11.7 (1.11)

49 63.0 (0.36) 32.7 (3.19) 25.4 (1.81) 13.1 (1.00) 27.1 (1.49) 11.4 (1.25)

56 69.3 (1.45) 30.4 (1.57) 28.3 (0.44) 11.5 (0.65) 26.2 (0.11) 11.6 (0.40)

Balmoral 0 0.7 (0.48) 2.1 (0.57) 1.8 (1.09) 3.2 (0.93) 0.2 (0.03) 1.2 (0.12)

7 25.6 (2.69) 5.7 (1.14) 4.1 (1.96) 2.9 (0.54) 3.1 (0.43) 4.2 (0.80)

14 23.7 (5.16) 21.8 (1.18) 17.3 (1.66) 9.4 (0.95) 11.2 (3.48) 9.4 (0.36)

21 28.5 (1.06) 22.7 (0.77) 8.1 (0.47) 11.3 (1.54) 12.9 (3.33) 11.7 (1.11)

28 30.9 (0.30) 22.5 (1.66) 20.6 (0.37) 13.7 (0.47) 21.1 (0.40) 12.5 (0.13)

35 30.0 (0.41) 20.8 (1.10) 16.1 (2.16) 14.9 (0.62) 16.4 (1.26) 14.4 (1.27)

(Continues)
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T A B L E 2 (Continued)

Warm flooding of frozen soils Cold flooding of unfrozen soils Cold flooding of frozen soils
Soil DAF Ca Mg Ca Mg Ca Mg

mg L−1

42 32.9 (2.22) 25.2 (0.28) 19.5 (1.81) 15.7 (0.88) 17.2 (3.31) 18.3 (0.54)

49 34.6 (2.34) 30.3 (1.77) 19.9 (1.59) 17.5 (1.01) 19.5 (2.07) 19.0 (0.64)

56 40.7 (0.46) 29.2 (1.70) 20.5 (0.57) 12.5 (2.40) 16.3 (1.20) 14.1 (0.77)

Note. Iron and Mn were not detectable in floodwater. DAF, days after flooding. Standard error of mean in parentheses.

also clearly indicated by the highly significant (P < .001)

negative relationship between soil Eh and floodwater DRP

concentration under warm flooding in all soils (Supple-

mental Table S4), whereas under cold flooding of frozen

and unfrozen soils the relationship was weaker and often

not significant. Consistent with these observations, previous

studies reported significantly lower P release from flooded

sediments at 7 ◦C than at 35 C (Sallade & Sims, 1997)

and from frozen soils flooded at 4 ◦C than unfrozen soils

flooded at 20 ◦C (Dharmakeerthi et al., 2019a), suggest-

ing a lower redox-induced P release under spring snowmelt

than summer conditions.

When frozen and unfrozen soils were compared under cold

flooding, both pore water and floodwater DRP concentrations

were often not significantly different. The results indicate that

one freeze–thaw event prior to flooding had a negligible effect

on P release after flooding. Previous research investigating

the effect of freeze–thaw events on P solubility and availabil-

ity has yielded contradictory results; some studies showed

an enhanced P solubility and availability with freezing and

thawing (Messiga, Ziadi, Morel, & Parent, 2010; Yevdoki-

mov, Larionova, & Blagodatskaya, 2016; Ziadi, Whalen,

Messiga, & Morel, 2013), with multiple freeze–thaw events

intensifying the effect (Messiga et al., 2010), whereas in

other studies freezing and thawing did not have a significant

effect on P availability (Peltovuori & Soinne, 2005; Xu et al.,

2011; Zhao, Zeng, & Fan, 2008). However, these previous

studies were conducted using field moist or air-dried soil,

whereas in the current research soils were flooded and thus

had anaerobic conditions for most of the flooding period.

It is also interesting to note that the differences in DRP con-

centration between warm and cold flooding treatments at a

particular DAF were often greater for surface floodwater than

for pore water. This is likely because the change in floodwater

DRP concentration depends not only on the release of P from

soils to pore water but also on the effective diffusion of P from

pore water to floodwater. It is well established that the P dif-

fusion coefficient in soil is temperature dependent (Jungk &

Claassen, 1997; Mackay & Barber, 1984), with greater val-

ues at higher than lower temperatures. Dharmakeerthi et al.

(2019a) also reported a lower rate of P diffusion from pore

water to floodwater under cold flooding of frozen soils com-

pared with warm flooding of unfrozen soils.

4.2 Relationships between pore water and
floodwater cation concentrations and
floodwater dissolved reactive phosphorus
concentrations

Calcium and Mg are not redox-sensitive elements; thus, the

increase in Ca and Mg concentrations in most soils with DAF

is likely due to enhanced dissolution reactions under warm

temperatures, as previously observed (Jayarathne et al., 2016).

The decrease in Ca and Mg concentrations may be due to the

diffusion of cations from pore water to floodwater. Precipita-

tion reactions involving Ca and Mg may also decrease their

concentrations in pore water, as previously reported (Ama-

rawansha et al., 2015). Because all soils except Eigenhof soil

are alkaline and moderately calcareous, solubility of Ca and

Mg is most probably controlled by carbonates in these soils.

Thus, we can speculate that pore water Ca and Mg concentra-

tions under cold flooding were substantially less than under

warm flooding in these alkaline soils because of the lower sol-

ubility of Ca and Mg carbonates under colder temperatures.

Pore water Ca and Mg, in general, did not show significant

relationships with floodwater DRP concentrations, particu-

larly under cold flooding (Supplemental Table S4).

Significant (P < .05) positive relationships were observed

between pore water Fe and/or Mn and floodwater DRP con-

centrations (Supplemental Table S4) for all except Osborne

soil. This suggests that reductive dissolution reactions con-

tributed to P release, with simultaneous release of Fe and/or

Mn as previously reported for flooded soils under room tem-

perature conditions (Amarawansha et al., 2015; Young &

Ross, 2001). Less-than-detectable concentrations under cold

flooding of frozen and unfrozen soils are to be expected

because reductive dissolution only takes place under low Eh

values (Gotoh & Patrick, 1974; Patrick & Jugsujinda, 1992),

which were not reached under cold flooding conditions in this

study.

Increases in surface floodwater Ca and Mg concentrations

with DAF can be attributed to the diffusion of Ca and Mg

from pore water to floodwater, with enhanced diffusion rates

under warm temperatures. Highly significant positive rela-

tionships between floodwater Ca/Mg with floodwater DRP

under warm flooding (Supplemental Table S4) suggest disso-

lution of Ca and Mg phosphates releasing P and cations to soil
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solution, which eventually diffuses to overlying floodwater.

Similar observations were reported with flooded soils under

room temperature conditions (Jayarathne et al., 2016), where

dissolution reactions contributed to increases in Ca, Mg, and

DRP concentrations in floodwater, particularly during initial

stages of flooding. Under cold flooding, however, the rela-

tionships between floodwater DRP with pH, Ca, and Mg were

weaker and at times not significant (Supplemental Table S4).

4.3 Pore water and floodwater pH and their
relationships to floodwater dissolved reactive
phosphorus concentrations

A convergence of soil pH to neutral is the typical response

of mineral soils when flooded for a prolonged period (Pon-

namperuma, 1972). However, the trend of pH converging

to neutrality with flooding was not observed in frozen and

unfrozen soils flooded under cold temperatures. Instead, the

pore water pH increased with DAF in all soils flooded under

cold temperatures. Pore water pH showed a highly signifi-

cant (P < .001) positive relationship with floodwater DRP

concentration under warm flooding in the acidic Eigenhof

soil, but the relationship was not significant in the soils

that are slightly alkaline (Supplemental Table S4). Even

though highly significant positive correlations were observed

between floodwater DRP and pH under both warm and cold

flooding for all soils (Supplemental Table S4), the reactions

and processes involved in raising floodwater pH and DRP

with flooding may or may not be related and need to be

further investigated.

5 CONCLUSIONS

Redox-induced P release from flooded soils was greater under

warm temperatures than under cold temperatures. Stable soil

redox potentials under colder incubation temperatures mini-

mized microbially mediated redox reactions, which decreased

P release. Other flooding-induced changes in soils, such as pH

changes with flooding time, that may influence P dynamics

were less apparent under cold flooding of frozen and unfrozen

soils compared with warm flooding. One freeze–thaw event

prior to flooding under cold temperatures had a negligible

effect on redox-induced P release. Our results suggest that the

magnitude of P loss from soils to floodwater under cold tem-

peratures with possible freeze–thaw events would be substan-

tially less during the initial spring snowmelt stage than during

the latter stages of snowmelt with warmer temperatures.
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