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Abstract

A lack of sufficient training data, both in terms of variety and quantity, is often the bottleneck

in the development of machine learning (ML) applications in any domain. For agricultural

applications, ML-based models designed to perform tasks such as autonomous plant classi-

fication will typically be coupled to just one or perhaps a few plant species. As a conse-

quence, each crop-specific task is very likely to require its own specialized training data, and

the question of how to serve this need for data now often overshadows the more routine

exercise of actually training such models. To tackle this problem, we have developed an

embedded robotic system to automatically generate and label large datasets of plant

images for ML applications in agriculture. The system can image plants from virtually any

angle, thereby ensuring a wide variety of data; and with an imaging rate of up to one image

per second, it can produce lableled datasets on the scale of thousands to tens of thousands

of images per day. As such, this system offers an important alternative to time- and cost-

intensive methods of manual generation and labeling. Furthermore, the use of a uniform

background made of blue keying fabric enables additional image processing techniques

such as background replacement and image segementation. It also helps in the training pro-

cess, essentially forcing the model to focus on the plant features and eliminating random

correlations. To demonstrate the capabilities of our system, we generated a dataset of over

34,000 labeled images, with which we trained an ML-model to distinguish grasses from non-

grasses in test data from a variety of sources. We now plan to generate much larger data-

sets of Canadian crop plants and weeds that will be made publicly available in the hope of

further enabling ML applications in the agriculture sector.

1 Introduction

A review of the recent literature shows there is great optimism that advances in sensors [1–4],

robotics [5–10], and machine learning [11–16] will bring new innovations destined to increase
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agricultural production and global food security. Whether one speaks more broadly of preci-

sion agriculture, digital agriculture, smart farming, or Agriculture 4.0 (in reference to the

anticipated fourth agricultural revolution), the confluence of these technologies could lead, for

example, to automated methods of weeding, disease evaluation, plant care, phenotyping, and

yield predictions [16–28]. Such capabilities would increase crop yields and expedite breeding

programs, while minimizing inputs (e.g. water, fertilizer, herbicide, pesticide) and reducing

the impact on the environment.

Prototypes of autonomous vehicles performing farming tasks in the field exist already [9,

10, 29, 30]. However, putting the “brains” into such agents is still a hard challenge and success

is limited to a crop’s specifics and the task at hand. Machine learning (ML) utilizing convolu-

tional neural networks (CNNs) holds great promise for image-based location and identifica-

tion tasks in agriculture. The capabilities of CNNs have improved vastly in recent years [31–

33] and are now used as solutions to previously difficult problems such as object detection

within images [34], facial recognition [35], automatic image annotation [36], self-driving cars

[37] and automated map production [38].

While there are many different CNN architectures and training methods, a general rule

of thumb is the following: A model’s capability to identify objects in previously unseen data

(called generalizing) depends significantly on the amount of data the model has seen during

training [31, 39]. As a result, an inadequate amount of high-quality training data—in particu-

lar, labeled data—is often the bottleneck in developing ML-based applications, a fact under-

scored by many authors working in plant sciences and agriculture [11–13, 17–19, 21–26].

This problem is magnified by the circumstance that each application is likely to require its

own specific training data, especially given the very wide variety of plant appearances, e.g. til-

lering versus ripening, healthy versus diseased, crop versus weed. For example, training CNNs

to distinguish oats from their wild counterpart—which are responsible for an annual loss of

up to $500 million in the Province of Manitoba alone (according to https://www.gov.mb.ca/

agriculture/crops/weeds/wild-oats.html)—would certainly require a qualitatively and quantita-

tively rich dataset of labeled images of all variants.

The need for labeled training data is often satisfied by manual annotation, which is typically

achieved through one of two ways. If the classification problem is common knowledge, it can

be crowdsourced, as is done through platforms, such as Mechanical Turk [40] and ReCaptcha

[41]. Conversely, if the classification problem requires expert knowledge, crowdsourcing will

not be reliable and annotation must be performed by experts only. Both methods have been

suggested for labeling plant images [12, 22, 24, 25], and although there are tools available to

ease the process [42–44], manual annotation is both cost- and time-intensive and usually leads

to comparably small datasets in the magnitude of a couple of thousands images. As a work-

around to having large, labeled datasets, several strategies, such as transfer learning with

smaller labeled data sets [12, 45, 46] or unsupervised learning with unlabeled data [18], are

being explored.

Variety in a dataset can also be increased by data augmentation, i.e. modificationss like

rotating, translating, or color correction of existent images [12]. Which of these are suitable for

a given dataset can be determined manually for each dataset or be incorportated into the learn-

ing process itself [47]. While including data augmentation can enrich an existing dataset in the

training process and thus increase the robustness of the resulting neural network, it cannot

fully resolve the need to generate actual images of plants from different perspectives, since, for

example, plants have fundamentally different features when looked at from above or in profile.

Another interesting approach is to generate synthetic images via plant models [11, 12, 46], gen-

erative adversarial networks [48, 49] or by merging images belonging to the same class (“smart

augmentation”) [50]. To apply data augmentation and generative adversarial networks, an
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initial basis of labeled data is required. Similarly, for generating synthetic images a plant culti-

var must be modeled such that the resulting images match the phenological properties of real

plants. We cannot use data augmentation or synthetic methods to create, say, images of corn

plants from a sunflower dataset. In other words these methods do not create images of classes

different to those originally contained in the dataset. Thus, they do not scale over the wide vari-

ety of different crops and weeds and their respective growing stages. The ability to generate

labeled images directly from real objects, then, remains a matter of great importance for

machine learning in general.

In an effort to produce large quantities of high-quality training data for ML applications

in agriculture, we have developed an embedded system to automatically generate and label

images of real plants. This system—henceforth referred to as EAGL-I (Embedded Automated

Generator of Labeled Images)—is, in a nutshell, a robotically moved camera that takes pictures

of known plants at known locations from a large variety of known positions and angles. This

allows us to collect a wider variety of images of a single plant. We can, for example, take top-

down images or rotate the camera around the plant taking profile shots from any angle, allow-

ing us to capture its three-dimensional features. This cannot be achieved by simple linear

transformations of images captured from a fixed perspective.

Since we have full information and control over where on the image the plants are located,

we can automatically identify and label them. As a result, EAGL-I can generate labeled data at

the rate of thousands to tens of thousands of images per day, with minimal human interaction

and no dependence on crowdsourcing or expert knowledge. This allows us to generate initial

datasets, comprising of up to 20,000 images, for a specific crop or weed within a single day.

Imaging over several days allows us to add variety to the dataset by adding more individuals of

the same cultivar and by tracking their growing stages. With the EAGL-I system we can thus

generate labeled plant datasets for machine learning applications on demand and in large

quantities. The system described here can be applied to virtually any machine learning applica-

tion and scaled to meet the needs at hand.

While there are many examples in the literature of plant imaging systems already [51–64],

their primary purpose has been to capture and compare phenotypic information and growth

metrics. This is typically achieved through overhead shots only and requires close-to-zero vari-

ance in imaging conditions to ensure a high accuracy in extracting plant characteristics. This is

at odds with the type of datasets needed to train machine learning algorithms for plant classifi-

cation. In this case, one is interested in a rich dataset, with a wide variety of images falling

under the same label. Variety can be achieved through differences in the chosen parameters,

such as imaging angle (Fig 1), camera-to-plant distance, lighting conditions, time of day,

Fig 1. Example images taken by EAGL-I. A: Wild buckwheat in a profile shot. B-C: Yellow foxtail and barnyard grass in oblique angles. D: Canola in an

overhead shot. Blue keying fabric is used as background.

https://doi.org/10.1371/journal.pone.0243923.g001
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growth stage, and the use of different plants of the same cultivar or species. One must also

include different plants with different growing characteristics. For example corn (a fast-grow-

ing, tall grass) is very different, say, compared to dandelion (a ground-hugging rosette), but

one still needs examples of both (and indeed others) in the same training set to identify crop

versus weed with the highest possible accuracy. EAGL-I has the capabilities to incorporate all

these differences and is, to the best of our knowledge, the only imaging system fully dedicated

to the goal of generating machine learning datasets for plant classification.

The contributions of this paper are the following:

• We designed an imaging system to create labeled datasets for training machine learning

models

• This system has a high imaging rate and autonomously labels the imaged plants, offering an

alternative to time- and cost-intensive manual labeling

• The system can image plants from any angle and at different distances, thus, exceeding sim-

ple image augmentation and producing the variety needed for training datasets (see [65, 66])

• A wide variety of plants can be imaged and there is full freedom in their arrangement in the

coverable volume

• As a proof of concept, we generated a dataset of different weeds commonly found in the

Province of Manitoba, trained a CNN with it, and evaluated the resulting model on previ-

ously unseen data

The rest of the paper is structured as follows. Section 1 describes the EAGL-I’s parts, specifi-

cations, and mode of operation. Section 2 describes data generation and defines the imaging

rate of EAGL-I. It also lists the parameters we used in production to generate a training data-

set. In Section 3, we characterize that dataset and use it to train a CNN to distinguish dicots

from monocots. Section 4 concludes the paper and discusses planned improvements to the sys-

tem and future work.

2 System overview

Table 1 gives an overview on the EAGL-I hardware. The system is setup in a gantry configura-

tion (Fig 2), such that the gantry head can be moved in all three dimensions of a volume mea-

suring 115 x 84 x 71 cm3. Two actuators per axis provide movement in the x-y-plane and a

Table 1. System overview.

Part Brand Model Specs Notes

x, y, and z Actuators Macron

Dynamics

MSA-628 Travels: 1500 mm. (x), 1000 mm. (y and z) Head moves in a volume of: 1150 × 840 × 718

mm3

Planetary Gearbox ServoElements MPS-60-

005

5:1 Ratio

Stepper Motors (xyz) ServoElements ST24-1.8-

297

NEMA 24, 24 V DC 2.8 A 1.8˚ step angle 2.7 Nm rated

torque

Motors have integrated stepper drives.

Controller of x, y, z

Actuators

Arduino Uno Rev3 Microcontroller: ATmega328PClock Speed: 16 MHz Max. Pulse Rate: 4000 pulses/second

RGB-Camera GoPro Hero 7

Black

WiFi/Bluetooth controlled Res: 4000 × 3000 px FOV

diagonal: 60.5˚–149.2˚

Used in linear mode, no zoom: FOV = 98.7˚

File format: jpg

Servo Motors (pan-tilt) Dynamixel MX-28T 11.1-14.8 V, 1.4 A 0.088˚ step angle 2.5 Nm stall torque

AC/DC Converter Mean Well USA LRS-350-

36

Output: 36 V, 9.7 A, 350 W

https://doi.org/10.1371/journal.pone.0243923.t001

PLOS ONE An embedded system for the automated generation of labeled plant images

PLOS ONE | https://doi.org/10.1371/journal.pone.0243923 December 17, 2020 4 / 23

https://doi.org/10.1371/journal.pone.0243923.t001
https://doi.org/10.1371/journal.pone.0243923


fifth actuator raises or lowers the gantry head. For safety and repeatability, we equipped the

actuators with limit and homing switches. The normally closed limit switches prevent the actu-

ators to move beyond their bounds. When the switches trigger (or lose power) the whole sys-

tems shuts off immediately and until a manual reset. The homing switches counteract possible

drifts or slips of the actuators. An Arduino Uno controls the gantry system’s actuators, with

power supplied by a 350-W AC/DC converter.

On the gantry head we attached a pan-tilt system followed by an RGB camera. An Arduino-

compatible micro-controller powers and controls the pan-tilt system via two servo motors,

allowing the camera to be rotated through any combination of azimuthal and polar angles

(360˚ pan, 180˚ tilt). The camera itself is powered by a commercial 20-Ah power bank that can

support its imaging process for over 8 hours and is easily swapped out.

3 Data production

The two main contributions here are the duration of the robotic movement and the image pro-

cessing time of the camera, each of which are discussed separately below.

3.1 Robotic movement

The camera is moved by the xyz-gantry and the pan-tilt-subsystem. Since panning and tilting

the camera happens in parallel to the movement in x, y, and z (and is almost always faster), we

can neglect that contribution for the imaging rate. We control the actuators close to the maxi-

mal pulse-rate the Arduino Uno can output (4000 pulses per second). This translates into a

Fig 2. The EAGL-I system. A: Full view with blue keying fabric pulled back to show the imaging volume. B: Close-up view of the gantry head carrying the

pan-tilt system, the camera, and a powerbank.

https://doi.org/10.1371/journal.pone.0243923.g002
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movement speed of

v ¼ pr � d � s � r �m ¼ pr � 0:105 �m; ð1Þ

where pr is the pulse rate, d = 105 is the distance traveled per revolution of the actuator in milli-

meters, s = 1.8/360 = 0.005 is the fraction of a full revolution made by 1 step of the stepper

motors, r = 0.2 is the gearbox’s reduction ratio, and m is a factor determined by the stepping

mode. For full-stepping mode m = 1, whereas half-stepping means m = 0.5. The controller

uses a linear acceleration and deceleration profile to ease in and out of the actuators’ move-

ments. Overall, then, we have a nearly linear proportional relationship between pulse rate and

travel speed. Furthermore, all three axis can be moved in parallel or one after each other.

When the camera is moved to a new position and orientation, it is useful to pause before

proceeding to trigger it to take an image. This allows vibrations to settle down and not doing

so might result in blurry images, especially when using longer exposure times.

When going through many different camera positions in sequence, the order in which

those positions are visited is of equal, if not even higher, importance than the speed with which

the camera is moved. To obtain a general optimal solution one would have to solve a three-

dimensional traveling salesman problem (TSP), which is a well-known NP-hard problem in

combinatorial optimization. In our typical application, we would have to solve the TSP for

thousands of different positions. While still feasible, we settled for a nested zig-zag algorithm,

as depicted in Fig 3, which offers a straightforward method to keep travel times between suc-

cessive camera positions short.

The cuboid-shaped volume through which the gantry system can move the camera is

divided into slabs of equal width along its x-axis. Those slabs are all subdivided into equally

wide columns along the y-axis. Now, starting at the bottom of the first column (containing

the coordinate system’s origin), we move the gantry head to the position inside that column

with the smallest z-value. From there we move upwards through the positions with the next-

largest z-values inside that column (ties in z-values are resolved arbitrarily). Note that small

movements in x- and y-direction are still happening, but are limited by the columns bound-

aries. We keep moving upwards until reaching the highest position inside the column. From

there we continue to the next column in positive y-direction and reverse the procedure: we

start with the position having the largest z-value and descend through the column. We keep

zig-zagging through the first slab’s columns until we reach the end of its last column. From

there we move to the second slab in positive x-direction. We continue a zig-zag motion work-

ing our way through the columns, but this time, when we change columns we move in negative

y-direction, until having traversed the entire second slab. We continue those zig-zag motions

from slab to slab, until each position was visited.

3.2 Imaging process

The imaging process is initiated by sending an HTTP request to the camera over WiFi. The

delay to send and process the request is negligible (of order of a few milliseconds) and thus is

of no concern for the imaging rate. The time to perform the imaging itself depends on the

camera settings and lighting conditions. In our indoor setup, without additional light sources

and a maximal ISO of 200, the camera needs approximately 2.7 seconds to take an image.

Allowing a higher exposure index would reduce that time, but also introduce grain to the

image. Additional lighting will reduce the exposure time, but is presently not a main concern.

Images can be downloaded from the camera via a USB or WiFi connection. In either case,

one can retrieve each image directly after it has been captured or retrieve all images in bulk

after the system went through each of its positions. Retrieving the images in bulk decouples
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the imaging procedure from retrieving the data. By doing so, any delays or problems when

transferring the images does not interfere with collecting the images. For the sake of automa-

tion, we value image collection higher than the data retrieval, since data generation takes much

longer than its retrieval and thus is harder to repeat.

Depending on the application, an easy way to increase imaging rate is by cropping several

subimages from a single image taken at a given position. In our application (generating single

plant training data) this is a valid approach and can increase imaging rate up to one order of

magnitude. Cropping out subimages results in different image sizes, which could be consid-

ered a drawback for some applications, but is rarely so in machine learning. Fig 4 shows an

example of cropping several images from a master image.

3.3 Production settings

We define average production times tm and ts for master- and subimages, respectively, as follows:

tm ¼
tp þ td
Nm

ð2Þ

ts ¼
tp þ td þ tc

Ns
; ð3Þ

Fig 3. Path of gantry head. Movement of the gantry head in a zig-zag motion through columns and slabs of the coverable volume, starting in the bottom

left near corner. The yellow arrows depict the motion from one slab to the next, nested inside those movements are the motions from one column to the

next, depicted by the green arrows (only shown for the first slab).

https://doi.org/10.1371/journal.pone.0243923.g003
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where tp is the total time required to produce Nm master images (including robotic movements),

td is the time to bulk download all master images from the camera to the computer, and tc is the

time required to crop out a total of Ns subimages from the master images.

To create a training dataset, we have performed runs with the system on a daily basis under

the settings listed in Table 2. This resulted in tm* 7 s and ts* 4.8 s. Those settings are conser-

vative and we have achieved during testing ts< 1 s. Imaging at such fast rates comes at a cost

of image quality, however. First, the shorter exposure time increases the ISO needed, which in

turn introduces grain to the image. Second, to achieve maximal imaging rates, we have to pack

plants in a tighter arrangement under the system. That can lead to overlap in the bounding

boxes, i.e. meaning there are cases in which we can see plant material of neighboring plants

in the images. Both points have to be accounted for, when using the data as training sets in

machine learning. Higher grain in the image masks detailed features, and plant material from

neighboring plants bring in unwanted features that do not correlate with the actual plant in

the image. Image quality and imaging speed are two defining factors for the datasets that can

be produced by EAGL-I and often have to be traded off for one another.

3.4 Cropping and labeling subimages

Different methods are available to us for cropping out a single plant from a master image. In

the following we give a roadmap for two approaches based on image processing and CNNs,

respectively. We chose for our system a third approach, instead, that relies on spatial informa-

tion alone.

Fig 4. Master image and cropped images. A: Original master image taken by EAGL-I. B– D: three subimages cropped out from it. Note that the cropped

images have different dimensions, whereas we present them here at the same size.

https://doi.org/10.1371/journal.pone.0243923.g004
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An image processing approach relies on color differences between the plant, the soil, and

the image’s background. With segmentation algorithms we could identify the plants inside the

image and construct a minimal bounding box around it. We describe a similar process in Sub-

section 2.5. In a second step the segments would have to be matched to the plants’ known posi-

tions to assign the correct label.

Alternatively one could consider machine learning techniques themselves for cropping and

labeling subimages. This approach, however, can only be applied once a sufficiently trained

model is available. Here a two-step procedure could be employed: First, a model is trained to

define bounding boxes in the image for each plant. These bounding boxes would again be

matched to the plants’ known positions for labeling. Now, a second model could be boot-

strapped, that not only finds bounding boxes, but also labels them by recognizing the plants

shown. Keeping in mind, that creating such models is ultimately the purpose of EAGL-I, we

encounter a “chicken or egg” problem.

In the case that there are more than one plant captured in one image, both approaches men-

tioned above have to rely on the plants’ spatial information at one point or another to correctly

match labels with subimages. Only after achieving the goal, which EAGL-I was built to solve,

we can discard spatial information completely, while still correctly labeling subimages. On the

other side, spatial information is always available to us and is sufficient for cropping and label-

ing subimages. This motivates the purely geometric approach we have implemented into our

system. It calculates the plants’ coordinates inside the image from their known relative position

and angle to the camera. As a result, labeling sub-images becomes trivial. Furthermore, the

method is robust, as we do not have to rely on the stability of an image processing pipeline or a

machine learning algorithm’s accuracy.

To calculate the bounding box around the plant we define a sequence of linear transforma-

tions that match the plant’s real-world coordinates (world frame) with the plant’s xy-position

Table 2. Production settings.

Setting Value

Locations Imaged 9

Parallel x, y, z Movement No

Peak Pulse Rate 3000 pulses�s−1

Acceleration Rate 10000 pulses�s−2

Stepping Mode Half-steps

Pause before Camera Trigger 3 seconds

Routing Algorithm Nested Zig-Zag

Maximal ISO 200

Imaging Time Approx. 2.7 seconds

Additional Lighting None

Image Download WiFi, In bulk

Total Images 2149

Total Subimages 3494

Time for Imaging tp 3 hours, 25 minutes

Download Time td 46 minutes

Cropping Time tc 34 minutes

Imaging Rate (Images) Ir Approx. 7 s/image

Imaging Rate (Subimages) Ic Approx. 4.8 s/image

Size on Disk 8-9 GB

https://doi.org/10.1371/journal.pone.0243923.t002
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inside the image (image frame). The net transform is

T ¼ Tw2c � Tc2i : ð4Þ

Here Tw2c is the linear transformation from world frame to camera frame, i.e. a frame in which

the camera is the origin pointing in positive x-direction. Thus, the linear transformation Tw2c

consists of a translation, depending on the gantry head position and the displacement due to

the pan-tilt system, and a rotation due to panning and tilting the camera. The transformation

Tc2i converts the camera frame to the image frame, meaning that the objects inside the cam-

era’s field of view are being projected on the xy-coordinates of the image. For this we calculate

bearing and elevation of the object’s position from the camera. Using these angles we map the

object to xy-coordinates (given in pixels), depending on the camera’s resolution and field of

view. To calculate the object’s size in the image frame we calculate its subtended angle from

the camera. To this end, we replace, for calculations, the plant by a sphere with radius large

enough that the plant is contained inside of it. For full details on these transformations, we

refer to our code in Ref. [67].

Given that we place plants on the floor (meaning the z-coordinate is known), we can also

invert the projection Tc2i and the transform Tw2c to map the position and size of objects in

image frame back to world frame. This inversion effectively allows us to determine any (suffi-

ciently flat) object’s x- and y-position from a single overhead image taken by the system itself.

We want to point out that following a geometric approach to locate the plants comes with

its own challenges: It relies on precise and accurate movements of the camera and location of

the targets. Accuracy and precision of our robot’s movements turned out to be sufficient for

this approach. To achieve good positioning of the targets, we measured and marked 12 target

locations that we use repeatedly. The system can also generate new target locations and mark

them with a laser. This allows us to not be limited to a fixed set of positions. A second challenge

to a geometric approach are lens distortions, i.e. deviations from a perfect rectilinear projec-

tion from camera frame to image frame. Such distortions usually appear on the image frame’s

margins. We countermeasure those drawbacks by using relatively large spheres to approximate

the plants imaged. Other countermeasures would be to measure the distortions and use soft-

ware correction before cropping the subimages, or to simply not use subimages that lie too

close to the image’s margins, or to use digital zoom that effectively reduces the field of view to

an area with only negligible lens distortions.

3.5 Image postprocessing

As mentioned above, EAGL-I produces images against a neutral blue background. This is a

deliberate choice as the background has a high contrast with the plant matter, especially when

converting the image’s colorspace from RGB to the CIELAB color space. This in turn, enables

and simplifies image processing techniques, foremost background replacement. Having a

background with little to no artifacts, or even a completely removed background, allows our

data to be application-agnostic and thus be of use for a wider audience. By replacing the back-

ground users can tailor the data generated by the EAGL-I system towards their own applica-

tion by, for example, inserting images of their local soil or lab environment as background.

We now shortly describe the background removal and replacement process for images cre-

ated by our system (see Fig 5). We used the PlantCV library for Python [68], which itself is

based on OpenCV [69]. In a first step we convert the image from the usual RGB color space to

the CIELAB color space, in which the b-channel ranges from low values for blue pixels to high

values for yellow pixels. Fig 5b shows the b-channel of our example as a grayscale image, the

blue background appears dark, whereas the plant and soil are bright shades of gray. With a
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binary threshold-filter based on this channel we keyed out the plant as shown in Fig 5c. Addi-

tional filters can be applied to remove artifacts and to smooth the edges of the thresholding

operation (e.g. dilating, filling holes, eroding, Gaussian blur). Once the background is keyed

out, it can be replaced by any other application-specific background. In panel D of Fig 5 we

used a stock photograph of soil as background. Again, additional measures can be taken to

adjust for similar light conditions, perspectives and size. These are highly dependent on the

application’s requirements.

Since the camera positioning can be repeated precisely, a second technique to key out the

plant also becomes available: background subtraction. For this technique a second picture is

taken from the same position and angle but without the plant. This image, that contains the

background only, can be subtracted from the image containing the plant, leaving the plant

itself.

Further image processing can be employed to remove the dark soil from the green plant or

to extract morphological information. Those techniques are widely deployed in the area of

(high throughput) phenotyping. For those techniques we refer to Ref. [68] and PlantCVs

online documentation. For a visual demonstration of background removal and the EAGL-I

system as a whole, we provide a supporting video, see S1 Video, with this paper.

4 The weedling dataset

As proof of concept we have generated a labeled dataset of seedlings of eight weeds that are

common in Manitoban fields. This dataset [70] allows us to test systems that lie downstream

in the development pipeline, in particular databases and the training of machine learning

algorithms.

We chose weed species as targets, as they are of general interest and can be found amongst

virtually every cash-crop in the field. The reasons to focus on a rather early growing stage are

several. Using seedlings allows us to grow more individuals in rotation, discarding older plants

for newer ones. This results in a richer dataset, compared to imaging a smaller number of

individuals over their full life cycle. Furthermore, we can image more plants in parallel, thus

achieving a higher imaging rate, if they are small. Lastly, a rather important and pragmatic

argument is that the identification (and eradication) of weeds is most critical in the early stages

of crop growth when plants are small and a canopy has not yet developed.

To generate the dataset we used the production settings as given in Table 2. In 10 runs we

generated 34,666 subimages of weeds in a total imaging time of 47 hours and 30 minutes. Set-

ting up the system to perform a single run requires personal attendance of roughly 15 minutes,

after which the system continues autonomously and does not need further supervision. All

images were taken in front of the blue background (Figs 1, 2 and 4) to ease image processing

Fig 5. Background removal. A: Original Image captured by EAGL-I. B: The originals blue-yellow channel as a grayscale

image. C: Keyed out image. The background is removed by defining a threshold for the blue-yellow values. All pixels below

that threshold are masked out. D: The background is replaced by a stock photograph of soil.

https://doi.org/10.1371/journal.pone.0243923.g005
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and segmentation. The dataset and its respective metadata (see below) is designed along two

principles: First, we aim to showcase the system’s capabilities of taking images from many

different perspectives, exceeding what would be possible by mere image processing. Second,

along with its metadata this dataset should allow interested researchers to create subsets (e.g.

only profile shots) that fit their needs and applications best. Table 3 gives an overview on the

dataset’s characteristics.

Each image of the dataset is accompanied by two additional files. The first is a copy of the

original image that contains bounding boxes corresponding to the cropped out subimages.

The second is a JSON-file containing the following metadata fields:

• version: A version number differentiating file formats; this dataset’s version is 1.5 and differs

from earlier test sets in the number of data fields and formatting style.

• file_name: A unique image identifier of the form yyyymmddhhmmss-pose#.jpg, where the

first 14 digits encode year, month, day, hour, minute, and second of when the image was

captured. The number after pose denotes the position of a specific data-acquisition run.

• bb_file_name: A unique identifier for a copy of the master image with bounding boxes

drawn on it. The format is equal to the one in file_name but with a -bb attached after the

pose number.

• date and time: Date and time at which the picture was taken

• room and institute: Abbreviated location of where EAGL-I was set up.

• camera and lens: Information about the camera being used. In the case that there is no spe-

cific lens information the lens field can be used for model information (in our case we use

camera = GoPro and lens = Hero 7 Black)

• camera_pose: A literal containing the camera position in terms of x, y, and z coordinates,

polar-, and azimuthal angle.

• bounding_boxes: A list of objects containing information for all cropped subimages, contain-

ing the following fields for each such image:

• plant_id: A unique identifier for each plant, consisting of the first letters of its scientific

name and a number, for example: echcru002

• label: The common name label, for example: BarnyardGrass

Table 3. The weedling dataset.

Weed Number of Images�

Echinochloa crus-galli (Barnyard Grass) 8621

Cirsium arvense (Canada Thistle) 4706

Brassica napus (Volunteer Canola) 6723

Taraxacum officinale (Dandelion) 4797

Persicaria spp. (Smartweed) 870

Fallopia convolvulus (Wild Buckwheat) 4621

Avena fatua (Wild Oat) 1218

Setaria pumila (Yellow Foxtail) 3110

Total 34,666

� Variations are due to different germination success

https://doi.org/10.1371/journal.pone.0243923.t003
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• scientific_name: For example Echinochloa crus-galli

• position_id: Denoting the positional ID at which the plant was located

• subimage_file_name: A unique subimage identifier of the form yyyymmddhhmmss#.jpg,

where # is the position ID that ensures uniqueness

• date_planted: The day we put the plant’s seed in soil

• x_min, x_max, y_min, y_max: The subimage’s coordinates in the parent image, given as a

percentage. A value of x = 0, y = 0 denotes the image’s upper right corner, whereas x = 1,

y = 1 denotes the lower left corner; this is conform to the directions as defined in the

OpenCV-library, which is used for our image processing pipeline

Since the available imaging perspectives of a plant depends on where it is located, we have

sorted the position IDs into two classes: In the first class, four of the positions lie on the edge

of the volume that the gantry system can cover. That limits the camera-poses from which we

can image that position to half a cylinder. The second class of positions lie in the interior of the

coverable volume, resulting in a half-sphere of possible camera-poses to image from. See Fig 6

for a visualization of the two different classes. The subimages are sorted by these two location

classes and saved into respective subfolders.

4.1 Application example: Training a simple CNN

To demonstrate the value of data collected with the EAGL-I system, we train a CNN that sorts

plants into one of two distinct classes. We want to point out, that the task itself and the meth-

ods employed serve only as an example for how a dataset created by our system can be used.

Achieving a model with an accuracy competitive to state-of-the-art deep learning methods lies

outside the scope of this paper and will be the focus of future work. For more advanced models

similar in structure we refer to Refs. [71–73]. Instead we take a data-centric perspective and

employ the heuristic that supervised learning models are eventually limited by their training

data [31, 39]. Consequently, the following discussion of results focuses on how EAGL-I can

help in extending and modifying the training dataset to improve classification results for the

model presented here.

Fig 6. Camera positions. The different camera positions from which the plant located at the green triangle is imaged. Scenario A: Since the plant is located

at the border of the traversable volume, we have a cylindrical shape from which we can image the plant. Scenario B: The plant is located in the inside of the

traversable volume, resulting in circles at different heights and radii from which we image the plant.

https://doi.org/10.1371/journal.pone.0243923.g006
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4.1.1 Model and task. The specific task we pose to the network is to differentiate between

grasses and non-grasses. As representatives for grasses we have barnyard grass, wild oats and

yellow foxtail. We chose this task (in contrast to other classification challenges like identifying

each species by itself or for example differentiating the cash crop canola from weeds) for two

reasons: First, a significant portion of our training images includes seedlings that have not

grown their first true leaves, yet. Since all non-grasses in our datasets are dicots, a visual dis-

tinction between grasses and non-grasses is possible even during their earliest growing stages.

Second, a key question to answer is how the data generation process has to be improved such

that models trained on the respective data generalize to new scenarios. For this it is instrumen-

tal to test the models on external data. Defining this rather general task allows us to run the

model with a wider variety of data, specifically to plants that we did not have access to when

generating the training set.

To perform this task we trained a model based on the established ResNet architecture [74]

with 50 layers and randomly initialized weights. We average and normalize the input images

to enhance the actual differences between the pictures, which are the plants (in contrast to the

rather uniform blue background). To counteract the slight imbalance between the two classes

we introduce class weights cm and cd defined as

cm ¼
jTotal imagesj

jImages of monocotsj
; cd ¼

jTotal imagesj
jImages of dicotsj

: ð5Þ

We used 80% of the data for training, reserved 20% as validation data, and repeated training

over the entirety of the training set 50 times (each one forming an epoch). The validation accu-

racy achieved a satisfactory convergence with a validation accuracy of 99.71% after 50 epochs

(average of 99.79% and a variance below 0.025% over the last 20 epochs). The evolution of the

validation accuracy per trained epoch is graphed in Fig 7.

4.1.2 Results in different scenarios. Now we present new data to our network. In doing

so we test its capabilities and how well it generalizes to new scenarios. Furthermore, we discuss

options on how the EAGL-I system can collect data that will lead to better models. As testing

data we consider the following collections that increasingly differ from the training data:

• Images of the same species taken by the EAGL-I system, but with new individual plants.

Those images differ from the training set only in having different individuals of the same

species.

• Images of the same species taken by the EAGL-I system, but under randomized camera

angles and distances.

• Images of the same species outside EAGL-I’s environment with a neutral background taken

by a smartphone camera.

• A collection of Arabidopsis and tobacco plant images under lab conditions produced by

Minvervi et al. [57].

• A collection of field data of sugar beets produced by Haug and Ostermann [75].

• A collection of plant seedling images produced by Giselsson et al. [76].

The results for the different scenarios are summarized in Table 4.

Before discussing the results, we point out that the test datasets are small compared to our

training and validation datasets. This is a strong indicator that (i) the generation of good

labeled datasets can indeed be time- and cost-intensive, and (ii) datasets are often associated
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with specific applications in mind. This reinforces why a system like EAGL-I is so important:

It allows one to quickly produce large amounts labelled data for a wide variety of applications.

In the first scenario an accuracy of 98.4% was achieved, indicating that the model general-

izes to new plants of the same species imaged under the same circumstances. The model we

used has converged on the training data and might even show first signs of overfitting. For

example, if we apply the model that is available after 40 epochs of training, the accuracy on the

test data increases by 0.5% to 98.9%. To counteract overfitting and improving classification

accuracy we can introduce more representatives of the two different classes to our dataset.

When we randomize the positions from which we take images, we see that it has no signifi-

cant impact on the model’s overall accuracy. From this we conclude that the variety of angles

covered in our training sets are sufficient for the model to be insensitive to imaging angles

(such as profile shots or overhead shots) when distinguishing grasses from non-grasses.

Fig 7. Validation accuracy in percent evaluated after each training epoch.

https://doi.org/10.1371/journal.pone.0243923.g007

Table 4. Test datasets.

Test Dataset Size of Test Set Correctly Identified Accuracy Standard Error

Validation Dataset 6933 6913 99.71% 0.06%

EAGL-I camera, same species, same angles 3494 3437 98.4% 0.2%

EAGL-I camera, same species, randomized angles 520 513 98.7% 0.5%

Neutral Background, smartphone, same species 56 50 89.3% 4.1%

Minervi et al. [57] 347 283 81.6% 2.1%

Haug and Ostermann [75], field data, sugar beets 162 (of 494) 120 74.1% 3.4%

Giselsson et al. [76] field data, different species 500 (of 5539) 316 63.2% 2.2%

https://doi.org/10.1371/journal.pone.0243923.t004
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For images taken by smartphone with a neutral background, a high accuracy above 89% is

still achieved. The model generalizes to new imaging conditions, then, although with reduced

accuracy (which is to be expected). Thus, the accuracy on the test data could deviate from the

model’s accuracy on a larger set of similar images. To give a more complete picture of where

the model’s true accuracy lies, we calculated a Clopper-Pearson confidence interval of [0.78,

0.96] at a confidence level α = 0.05.

We now explore how a model trained on our dataset generalizes to data produced by others

for species that are not represented in our training set. The dataset in Ref. [57] consists of 283

images of Arabidopsis plants and 62 tobacco plant images. The images are all taken top-down

and show the plants at different growing stages. The dataset was taken with phenotyping appli-

cations in mind and contains images of dicots only. On the overall data we achieve an accuracy

of 81.6%, which in this case coincides with how many plants were classified as dicots. This is a

strong demonstration that models trained with our data can generalize to species not included

in the training data. If we break the test data down via the two species, we see that the model

has an even better performance on the Arabidopsis images (91.2%), while performing rather

poorly on tobaccos (37.1%). This tells us that the training set we generated is missing dicots

that are morphologically similar to tobacco plants, and that we need to include these to achieve

a more robust model.

As a next step to test how far our binary classifier generalizes, we applied it to the dataset

provided in Ref. [75]. T his dataset consists of field data taken in a sugar beet field and features

crop and weed plants. Since the annotations do not specify the weeds, we only use images that

show sugar beets (a dicot). The original data in Ref. [75] shows several plants per image. Thus,

we used the metadata provided by the authors to crop out the sugar beet plants. Still, on many

of those cropped images we see plants overlapping into the cropped section. This is in contrast

to our training data, which has all plants well separated from each other. The test data also fea-

tures natural background (dirt) in contrast to the rather homogenous backgrounds on images

we trained and tested on before. On the aforementioned subset our model achieves an accu-

racy of 74%. While not perfect, this shows that the model has already some capacity to general-

ize to new lighting and background conditions and another species of plants the model has not

trained on. A first step to increase the usability of the training data for this application would

be to include sugar beets into the training set. Also, positioning the plants closer to each other

inside the EAGL-I system, such that overlaps happen on the resulting images, will result in

training data more suitable for this task. Furthermore, the background can be replaced by

images of soil typical for the fields in the test dataset.

Finally, we applied our model to the dataset given in Ref. [76]. This dataset is very challeng-

ing for various reasons: First, the contrast between plant and background is not as distin-

guished as in our training set or the other test sets. Second, the data contains many plants at

their earliest growing stages and as a result some images have a resolution as small as 49 x 49

pixels (see Fig 8 for an example of a high- and low-resolution image). Third, as in the previous

test dataset, the images contain sometimes multiple overlapping plants, though the authors of

Ref. [76] have ensured that only one species is present in each image. Fourth, the dataset con-

tains only species that are not present in our training data. Still, our goal to distinguish mono-

cots from dicots remains. To this end, we sorted the plants in Ref. [76] into two categories:

maize, wheat, blackgrass, and loose silky-bent represent monocots; whereas sugar beet, may-

weed, chickweed, shepherd’s purse, cleavers, charlock, fat hen, and cranesbill comprise the set

of dicots. To test the model we chose the 250 images with highest resolutions for both classes.

The achieved accuracy is 63.2% (confidence interval [0.59, 0.67] at α = 0.05). Although this

value does not lie far above 50%, it is still significant as it shows that the model generalizes to

some extent to data that shares only small similarities to the training data. A first step to
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improve accuracy would be to detect and crop out the plants in the test data before classifica-

tion. This reduces the number of artifacts and ensures that no multiple plants are in a single

image. Another improvement for this specific test data would be achieved by generating train-

ing data more suitable to the task, meaning imaging species used in Ref. [76] and focusing on

overhead shots. As presented in Subsection 2.5, the blue background in the training images

can be replaced by images of the granulate appearing in the images of Ref. [76] to achieve an

even higher similarity to the test data. This idea to create training data that resembles the data

we can expect in an application is exactly the raison d’etre of the EAGL-I system.

5 Conclusion and future work

In this paper we described the construction, operation, and utility of an embedded system

(EAGL-I) that can automatically generate and label large datasets of plant images for machine

learning applications in agriculture. Human interaction is reduced to selecting the plants to

image and placing them inside the system’s imaging volume. EAGL-I can create a wide diver-

sity of datasets as there are no limitations in plant placement, camera angle, or distance

between camera and plant within this volume. Furthermore, the use of blue keying fabric as a

background enables additional image processing techniques such as background replacement

and image segmentation. The system’s performance was demonstrated along several dimen-

sions. With a subimage production time of *4.8 s, we produced a dataset of over 34,000

labeled images of assorted weeds that are common in the Province of Manitoba. We subse-

quently used that dataset to train a simple convolutional neural network for distinguishing

monocots from dicots, which in turn was tested on a variety of other datasets with quite favor-

able results.

We see the EAGL-I system as a important stepping stone to enabling new ML-based tech-

nologies in agriculture, such as automated weeding, that will require large amounts of labeled

training data. Our system also provides opportunities to follow research questions that were

not accessible before. For example, with the ability to generate a quasi-unlimited source of

data ourselves, we can investigate how quantity and quality of training data influences machine

learning models. Normally the amount of training data for a problem is hard-capped and acts

as an observation limit for this type of research.

There are many other directions for improvements and future work for the EAGL-I system,

of which we mention a few here.

Fig 8. Examples of test data. A: A test image taken with a smartphone. B: A cropped out image from the dataset in Ref. [75]. C-D: Two examples from the

seedling dataset of Ref. [76]: a high-res image containing multiple sugar beets and artifacts to the left border and a low-res image containing a maize

seedling.

https://doi.org/10.1371/journal.pone.0243923.g008
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Future datasets

The EAGL-I system has been operational since late 2019. The Weedling dataset serves as a first

sample and proof of concept for what the system can deliver. All the data that we eventually

generate will be curated and released under a data management plan (see also Section 5).

This includes partitioning the data into subsets similar to the Weedling dataset presented in

Section 3.

Lighting

The addition of programmable LED lighting elements are being planned and will allow us to

customize lighting conditions on a per image basis, if desired. This will enable an even wider

variety of images to be collected by simulating different lighting scenarios, e.g. sunny, cloudy,

evening hours, etc.

System design and dimensions

EAGL-I is presently limited to take images inside its coverable volume putting hard limits on

the number and size of plants that can be imaged in a given run. This leads to research ques-

tions about the design of imaging systems that are specific for the creation of labeled data. The

challenge, then, is to design a system that can produce a wide variety of images—preferably

including a wide variety of plants differing in size and growing pattern—at a small cost and

high imaging rate. The gantry architecture of EAGL-I is simple and functional, but may not be

optimal. One direction we are considering is mounting linear actuators and cameras directly

to the walls and ceiling of a growth chamber.

Three dimensional plant data

Since we have full control over the camera position, we should be able to use software to recon-

struct 3-dimensional plant models from 2-dimensional images taken from different angles.

This could be a simple depth map extracted from two or more images via parallax or a 3d-

point cloud combining more images. Alternatively, we can mount different imaging systems,

such as stereoscopic cameras, to the gantry head in order to generate 3d data directly.

Detection and imaging of plant organs

Often one is interested in the specific parts or organs of a plant, such as wheat spikes. To image

these effectively, we have to solve how to point the camera at the desired organ for each plant.

To achieve this we could combine machine learning techniques with our imaging system to

bootstrap a training dataset for identifying specific plant organs. From there we can use a

model to automatically move the camera in close proximity of the wheat spikes, say, and cap-

ture high resolution images. Both, the training set for identification, and the image dataset of

high resolution wheat spikes would be valuable for subsequent applications such as phenotyp-

ing, blight detection and crop evaluation in the field.

Scalability

We designed EAGL-I as our first concept to generate large quantities of labeled plant-image

data. It is a simple gantry design that can be scaled up or down in size to meet the needs of the

user. Multiple systems can also be employed to increase data generation rate. To this end, we

are now developing more compact systems that trade imaging rate for lower costs and even

easier operation. Such low-cost plug-and-play systems offer non-expert users the ability to gen-

erate bespoke datasets with minimal effort. The systems can be set up in standard growing
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chambers and research labs, allowing plant scientist and breeders to support their own work

directly and at the same time contribute (if so desired) to communal data generation on an

even larger scale than would be possible through just our present single EAGL-I system.

Where possible, this additional data will be ingested into the overarching dataset mentioned

above.

6 Data availability

The dataset and model described in Section 3 are publicly available [70]. The production of

much larger future datasets is underway and will include Canadian crop plants, such as wheat,

canola, soybean, and pulses. We presently envision depositing these datasets at the Federated

Research Data Repository (https://www.frdr-dfdr.ca/repo/) through a data management plan

developed with the tools provided by the Portage Network (https://portagenetwork.ca).

Supporting information

S1 Video. Video demonstrating EAGL-I and background removal.
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