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Abstract

In addition to being extremely non-linear, modern machine learning problems require millions
if not billions of parameters to solve or at least to get a good approximation of the solution,
and neural networks are known to assimilate that complexity by deepening and widening their
topology in order to increase the level of non-linearity needed for a better approximation. How-
ever, compact topologies are always preferred to deeper ones as they offer the advantage of using
less computational units and less parameters. This compactness comes at the price of reduced
non-linearity and thus, of limited solution search space. This thesis proposes the N-Dimensional
Polynomial Neural Network (NDPNN) model that uses automatic polynomial kernel estimation
for N-Dimensional Convolutional Neural Networks (NDCNNs) and introduces a high degree of
non-linearity from the first layer which can compensate the need for deep and/or wide topolo-
gies. We first theoretically formalized the 1IDPNN model which can process 1-dimensional
signals and we demonstrated that its inherent non-linearity enables it to yield better results
with less computational and spatial complexity than a regular IDCNN on various classification
and regression problems related to audio signals, even though it introduces more computational
and spatial complexity on a neuronal level. The experiments were conducted on three publicly
available datasets and demonstrate that the proposed 1IDPNN model can extract more relevant
information from the data than a 1IDCNN in less time and with less memory. We subsequently
extended the theoretical foundation of the IDPNN to NDPNN which can process 2D signals such
as images and 3D signals such as videos. Also, we theoretically created a general polynomial de-
gree reduction formula that we used to develop a heuristic algorithm, which enables the degree
reduction of any pre-trained NDPNN. This algorithm compresses an NDPNN without altering
its performance, thus making the model faster and lighter. Following that, we used 2DPNNs
and 3DPNNs to tackle the problem of plant species recognition on a publicly available plant
species recognition dataset composed of 40,000 images with different sizes consisting of 8 plant
species. As a result, we created a novel method, called Variably Overlapping Time—Coherent
Sliding Window (VOTCSW), that transforms a dataset composed of images with variable size
to a 3D representation with fixed size that is suitable for convolutional neural networks, and
we demonstrated that this representation is more informative than resizing the images of the
dataset to a given size. We theoretically formalized the use cases of the method as well as its
inherent properties and proved that it has an oversampling and a regularization effect on the
data. By combining the VOTCSW method with 3DPNNs, we were able to create a model that
achieved a state-of-the-art accuracy of 99.9% on the considered dataset, surpassing well-known
architectures such as ResNet and Inception. Furthermore, we established that the currently
available plant species dataset could not be used for machine learning in its present form, due
to a substantial class imbalance between the training set and the test set. Hence, we created
a specific preprocessing and a model development framework that enabled us to improve the
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accuracy from 49.23% to 99.9%. The contributions of this thesis are the creation of a novel
generic model called NDPNN that can extract more information from data than a NDCNN with
less computational and spatial complexity, the evaluation of the performance of NDPNNs on
audio signals, images and videos, the creation of a general direct polynomial reduction formula,
the design of a heuristic algorithm for NDPNN compression that generates faster and lighter
models, the formalization of an image transformation method that circumvents image resizing
without altering fine-grained information, and the production of a state-of-the-art 3DPNN for
plant species recognition.

Keywords: Convolutional neural networks, polynomial approximation, deep learning, audio
signal processing, polynomial degree reduction, plant species recognition.
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Chapter 1

Introduction

The Artificial Neural Network (ANN) has nowadays become an extremely popular model for
machine-learning applications that involve classification or regression [1]. Due to its effectiveness
on feature-based problems, it has been extended with many variants such as Convolutional
Neural Networks (CNNs) [2, 3] or Recurrent Neural Networks (RNNs) [4, 5] that aim to solve a
broader panel of problems involving signal processing [6, 7] and/or time-series [8, 9], for example.
However, as data is becoming more available to use and exploit, problems are becoming richer
and more complex, and deeper and bigger topologies [10, 11] of neural networks are used to solve
them. Moreover, the computational load to train such models is steadily increasing - despite
advances in high performance computing systems - and it may take up to several days or weeks
just to develop a trained model that generalizes well on a given problem. This aggravation is
partially due to the fact that complex problems involve highly non-linear solution spaces, and,
to achieve a high level of non-linearity, deeper topologies [12] are required since every network

layer introduces a certain level of non-linearity with an activation function.

A well-known machine-learning trick to alleviate such a problem is to resort to a kernel transfor-
mation [13, 14]. The basic idea is to apply a non-linear function (that has certain properties) to
the input features so that the search space becomes slightly non-linear and maybe (not always)
more adequate to solve the given problem. However, such a trick highly depends on the choice of
the so-called kernel, and may not be successful due to the fact that the non-linearity of a problem
can not always be expressed through usual functions; e.g. polynomial, exponential, logarithmic
or circular functions. Moreover, the search for an adequate kernel involves experimenting with
different functions and evaluating their individual performance which is time consuming. One
can also use the kernel trick with neural networks [15, 16] but the same problem remains: What

is an adequate kernel for the given problem?
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1.1 Problem Statement

To solve the problem of automatically designing a kernel for any given problem, Ivakhnenko
introduced the concept of polynomial networks [17] where he expanded the definition of a Rosen-
blatt’s perceptron [18] by enabling it to take two inputs and estimate the weights corresponding
to their quadratic expansion in order to better approximate an output. This concept was further
generalized into polynomial neural networks (PNNs) introduced by Oh et al. [19] where each
neuron could use weights to estimate the polynomial expansion of any degree of any pair of in-
puts. By dynamically interconnecting neurons into layers using a construction algorithm, they
built a network that could approximate a scalar output using a full polynomial expansion of an
input vector. However, the structure of a PNN could not allow for weight sharing or densely
connected neurons as each neuron could have access to only 2 components of an input vector.
In this thesis, we aim to create the foundation of a new model that extends the PNN model
to allow for weight sharing via convolution such as in N-Dimensional CNN (NDCNN) and our
objective is to demonstrate that the non-linearity introduced by polynomial approximation may
help to reduce the depth (number of layers) or at least the width (number of neurons per layer)
of the conventional neural network architectures due to the fact that the kernels estimated are
dependent on the problems that are considered, and more specific than the well-known general
kernels.

1.2 Proposed Approach

The model that we propose is a novel variant of NDCNN which we call N-Dimensional Poly-
nomial Neural Network (NDPNN) designed to create the adequate kernels for each neuron in
an automated way using a polynomial approximation with a given degree for each layer, and
thus, better approximate the non-linearity of the solution space by increasing the complexity
of the search space. The NDPNN model is fundamentally different from the PNN model in
the sense that any neuron can take any number of inputs (not just 2 as in the PNN model),
a neuron’s input is a finite number of N-dimensional signals (not scalars), a neuron’s output
is not necessarily a polynomial (it can be a non-linear function applied to a polynomial), the
weights of a neuron can be shared between the components of an input via convolution, and the

output of an NDPNN is, in general, a finite number of N-dimensional signals (feature maps).

In this thesis, we created a three-step approach to develop the NDPNN model. The first step
of our approach is to restrict ourselves to only 1-dimensional signals and, thus, to defining and
using 1IDPNNSs so that we can incrementally build a foundation for 2DPNNs and 3DPNNs. We
present a formal definition of the IDPNN model that is easily extensible for 2-dimensional and
3-dimensional signals and which includes forward and backward propagation, a new weight ini-
tialization method, and a detailed theoretical computational complexity analysis. Our proposed
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1DPNN is evaluated in terms of the number of parameters, the computational complexity, and
the estimation of performance with different activation functions for various audio signal appli-
cations involving either classification or regression. Two classification problems were considered,
musical note recognition on a subset of the NSynth[20] datset and spoken digit recognition on
the Free Spoken Digits dataset [21]. Only one regression problem was considered for which a
subset of the MUSDBI18 [22] dataset was used, namely audio signal denoising.

The second step of our approach is to extend the IDPNN to NDPNN by generalizing the formal
definition of the IDPNN to higher dimensions (2 and 3) and to find a way to minimize the
degree of each layer of a pre-trained NDPNN with little to no compromise on its performance in
order to improve its computational efficiency and to reduce its spatial complexity. To do so, we
use the assumption that the samples of the feature map produced by each layer of a pre-trained
NDPNN are always bounded in a certain interval. Therefore, we are able to formally develop a
mathematical formula to generate a low degree polynomial that optimally approximates a higher
degree polynomial on a symmetric interval. Consequently, we develop a heuristic algorithm that
makes use of the polynomial degree reduction formula and that makes it possible to determine
the smallest degree of each layer of a pre-trained NDPNN that preserves its performance on its
test set, thus, enabling it to use less memory and less computational power while maintaining
the same performance on its test set.

The third step is to use the newly defined 2DPNNs and 3DPNNs in conjunction with the
degree reduction heuristic algorithm to produce state-of-the-art results on a given problem.
We consider the problem of plant species recognition on the "Weed seedling images of species
common to Manitoba, Canada" (WSISCMC) dataset [23] in order to enable the automation
of the data acquisition and the data labeling processes. The dataset is composed of images
of various sizes which makes it mandatory to create a representation with fixed size in order
to use neural networks. Therefore, we design a novel method based on sliding windows that
we call Variably Overlapping Time-Coherent Sliding Window (VOTCSW) and which allows
the transformation of images with variable sizes to a 3D representation with fixed size that is
suitable for both 3DCNNs and 3DPNNs and that offers a compromise between shrinking and
padding/magnifying the images. Following that, we create a model development framework
that enables the creation of a highly reliable and accurate NDPNN plant recognition model.
Furthermore, we redistribute the samples of the dataset to maximize the learning efficiency of
any machine learning model that may use it. We also train various well-know architectures
such as ResNetV2 [24], InceptionV3 [25] and Xception [26], and we evaluate the advantage of
using the VOTCSW method and the NDPNN degree reduction heuristic with respect to regular
2DCNNSs architectures.



Chapter 1. Introduction 4

1.3 Thesis Contribution

The work presented in this thesis has led to the following three journal papers:

"1-Dimensional Polynomial Neural Networks for audio signal related problems", Knowledge-
Based Systems, Volume 240, 2022, p. 108174 [27].

"Polynomial degree reduction in the L2-norm on a symmetric interval for the canonical
basis", Results in Applied Mathematics, Volume 12, 2021, p. 100185 [28].

"Plant Species Recognition with Optimized 3D Polynomial Neural Networks and Variably
Overlapping Time-Coherent Sliding Window', ArXiv, vol.abs/2203.02611, 2022 [29].

The contribution of this thesis is as follows:

Creating a novel generic model called NDPNN that can extract more information from

data than a NDCNN with less computational and spatial complexity [27, 29].
Formalizing the definition of the forward and backward propagation of a IDPNN [27].

Elaborating a detailed theoretical computational complexity analysis of the IDPNN with
respect to the IDCNN [27].

Linearizing the computational complexity of the IDPNN by implementing the model on
GPU [27].

Creating a theorem for generating a 1IDCNN with the same number of parameters of a
given 1IDPNN [27].

Evaluating the influence of various activation functions on 1DPNNs [27].

Comparing the performance of IDPNNs with that of IDCNNs on three audio signal related
problems with three different comparison strategies [27].

Creating a mathematical formula for polynomial degree reduction which is more stable and
less complex than classical methods and which can be applied on any machine learning
model that uses polynomials as kernels or as building blocks [28].

Using the formula to develop a heuristic algorithm for the degree reduction of pre-trained
NDPNNs which creates lighter and faster NDPNNs with little to no compromise to their
initial performances [29].

Extending the formal definition of IDPNNs to NDPNNs which can be used on 2D and 3D

signals such as images and videos [29].

Formalizing the VOTCSW method which circumvents the need to resize images from an
image dataset that has variable sizes by transforming each image to a 3D representation



Chapter 1. Introduction 5

of fixed size with minimal added synthetic data (padding, magnifying) and minimal loss
of data (shrinking) which is suitable for SDCNNs and 3DPNNs and which improves their
inference on the WSISCMC dataset [29].

e Creating an NDPNN model development framework that makes use of the degree reduction
heuristic and the VOTCSW method and allows the creation of the best fitting neural
network architecture on the WSISCMC dataset [29].

¢ Resampling the WSISCMC dataset with respect to class distribution and size distribution
in order to enhance the performance of any machine learning model trained on it [29].

o Creating a simple 3DPNN architecture that achieves a state-of-the-art 99.9% accuracy
on the WSISCMC dataset, and which outperforms highly complex neural network archi-
tectures such as ResNetb0V2 and InceptionV3, in less time and with substantially less
parameters [29].

e Determining the existence of aberrant samples in the WSISCMC dataset which are not

suitable for the single-plant species recognition task that this dataset was created for [29].

1.4 Thesis Layout

The layout of this thesis is as follows. Chapter 2 discusses the works related to the introduc-
tion of additional non-linearities in neural networks. Chapter 3 formulates the 1IDPNN model
mathematically and evaluates its performance with regards to the 1IDCNN model on various
audio signal related problems. Chapter 4 presents the generalization of IDPNNs to NDPNNs
and the formal creation of the polynomial degree reduction formula which is used to design a
heuristic algorithm that minimizes the degree of each layer of an NDPNN with a negligible effect
on its performance. Chapter 5 presents the use of 2DPNNs and 3DPNNs in the task of plants
species recognition and introduces the VOTCSW method. Finally, Chapter 6 addresses the
strengths and the weaknesses of the NDPNN model and proposes different ways of extending

and improving it.



Chapter 2

Literature review

Many of the works that try to add a degree of non-linearity to the neural network model focus
either on creating new layers, designing new activation functions or implementing neuronal
enhancements that change the behavior of conventional neurons such as in the work achieved in
this thesis. This chapter presents an overview of the most known techniques and methods used
to enhance the non-linearity of a neural network in order to improve its feature expressiveness
and its search space complexity. Section 2.1 discusses the most important activation functions
that are used to introduce non-linearity. Section 2.2 discusses the layers that were specifically
designed as non-linear extensions to regular neural network layers. Section 2.3 discusses the
ways in which neurons were modified, enhanced and extended to allow for better non-linear

approximations.

2.1 Activation Functions

Turian et. al [30] implemented a variant of the tangent hyperbolic called softsign that was
proposed by Elliot [31] to reduce the problem of gradient vanishing with a less abrupt saturation
than the tangent hyperbolic. They used it in conjunction with a quadratic filter extractor for the
purpose of token chunking and they achieved better classification accuracy than conventional
models. Although the problem of gradient vanishing was attenuated, using softsign produces
higher gradient updates due to its fractional nature which can cause unstable training. Jarrett
et al. [32] are the first to consider the Rectified Linear Unit (ReLU) as an activation function
for neural networks. They were inspired to do so by biological models which use rectifying
non-linearities such as the absolute value and they showed that the non-linearity of the ReLLU
function is one of the most important factors in improving the performance of convolutional
neural networks trained on three different datasets for object recognition. ReLU’s simplicity
allows the networks to be trained faster and to better propagate the gradients by minimizing the
vanishing gradient problem. However, ReLLU can cause the early death of neurons if the network
weights are not initialized in a certain way and can make mean shifts towards zero hard due to its
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saturation to zero for negative values. This issue was considered in the work of Clevert et al. [33]
where they designed the Exponential Linear Unit (ELU) to allow for a certain range of negative
values before saturation. They use it to demonstrate that the bias shift correction it introduces
not only speeds up learning but also improves the generalization capability of networks with
more than 5 layers trained on 4 different datasets. Following that, Ramachandran et al. [34] have
considered improving the ReLU and ELU by creating a reinforcement learning-based framework
that searches for multiple combinations of predetermined functions that perform well on certain
datasets. They discovered the swish function which outperforms every known improvement of
the ReLU in terms of stability, convergence speed and generalization capability.

2.2 Non-linear Neural Network Layers

The most used non-linear layer in the literature is the max pooling layer which subsamples an
input signal by taking the maximum value between samples contained in adjacent observation
windows. It was proposed by Riesenhuber et al. [35] in an attempt to more accurately model
object recognition in the visual cortex. They showed that the max operation enables object
recognition models to achieve translation, scale and elastic distortion invariance which improves
their generalization capability as well as their stability. However, the max pooling layer perfor-
mance decreases as the network becomes deeper due to the drastic reduction in the number of
available samples that will be convolved together and due to the disjoint nature of the pooling
regions. As a result, the Fractional Max Pooling layer [36] was proposed by Graham to address
these issues. He allows non-integer subsampling coefficients which helps in creating deeper ar-
chitectures of convolutional neural networks and he shows that this layer reduces overfitting
which makes regularization an option for deep networks. Nevertheless, like the max pooling
layer, the fractional max pooling layer only uses the max operation to output its values which
may not always be appropriate depending on the problem. This is where the work of Lee et
al. [37] on mixed, gated and tree pooling comes to circumvent this issue. They proposed a way
to generate pooling operations specific to the data at hand by adding a learnable parameter
that determines the proportion of max pooling and average pooling to perform, and then sum
the quantities together which they call "mixed" pooling because it mixes the max and average
operations. Although this improved the performance of regular convolutional neural networks
on various benchmark datasets compared to the simple use of max pooling, the "mixed" pool-
ing was not a data-responsive method since the proportion coefficient becomes static after the
learning process ends. Thus, they proposed the "gated" pooling which learns a gating mask
that produces a proportion coefficient via its dot product with the values in the pooled region.
This coefficient was then used in the same way as in the "mixed" pooling and produced even
better results. The last improvement that they achieved was the "tree" pooling which consists in

creating multiple gating masks, organizing them in a binary tree, and mixing each two children
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node into a parent node until only one parent node remains which becomes the final learned
pooling operation. This allowed them to achieve state-of-the-art results on three benchmark
datasets. Other non-linear layers have been developed such as dropout layers [38] and batch
normalization layers [39], but they are used as regularizers rather than approximators.

2.3 Non-linear Neuronal Enhancements

Many of the works that try to add a degree of non-linearity to the neural network model focus
either on enriching pooling layers [36, 37] by allowing more granularity or by incorporating
various additional operations, creating new layers (such as dropout layers [38] and batch nor-
malization layers [39]), or designing new activation functions [32, 30]. However, Campbell et
al. [40] used Ivakhnenko’s polynomial networks along with Hidden Markov Models for speech
recognition. They have proposed a novel training algorithm that can experimentally converge
to allow a polynomial network to approximate transition probabilities by which they demon-
strated the efficiency of such networks and achieved a high accuracy. However, they only used
Ivakhnenko’s neurons which have a number of limitations (as described in Section 1), and they
only obtained convergence for the cases they have tried without providing a formal proof.
Livni et al. [41] have considered changing the way Ivakhnenko’s neurons behave by making
them either compute a linear combination of the input components or a weighted product of
the input components. By stacking layers and creating a deep network, the network is able to
learn any polynomial of a degree not exceeding the number of layers. Moreover, they provide
an algorithm that can construct the network progressively. While achieving relatively good
results on various problems with a small topology and with minimal human intervention, they
only dealt with the perceptron model which can be inappropriate for the problems they tackled,
which are computer vision problems. In fact, the perceptron model does not take into account
the spatial proximity of the pixels and only considers an image as a vector with no specific
spatial arrangement or relationship between neighboring pixels, which is why a convolutional
model is more appropriate for these kind of problems. Similarly, Hughes et al. [42] have con-
sidered introducing the use of quadratic polynomials in RNN nodes because of their ability to
approximate more functions than affine functions can. By using this subtle tweak, they were
able to outperform state-of-the-art models on voice activity detection while using less number
of parameters, which suggest that the non-linearity is well captured by the quadratic nodes.
The study is, however, limited to quadratic polynomials and no further exploration of higher
polynomial degrees is performed.

Wang et al. [43], on the contrary, considered the 2D convolutional model and changed the way a
neuron operates by applying a kernel function on its input which they call kervolution, thus, not
changing the number of parameters a network needs to train, but adding a level of non-linearity

that can lead to better results than regular CNNs. They used a sigmoidal, a gaussian and a
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polynomial kernel and studied their influence on the accuracy measured on various datasets.
Furthermore, they used well-known architectures such as ResNet [44] and modified some layers
to incorporate the kervolution operator. However, they show that this operator can make the
model become unstable when they introduce more complexity than what the problem requires.
Although they have achieved better accuracy than state-of-the-art models, they still need to
manually choose the kernel for each layer which can be inefficient due to the sheer number of
possibilities they can choose from and because it can be really difficult to estimate how much
non-linearity a problem needs.

Mairal [45] on the other hand, proposed a way to learn layer-wise kernels in a 2D convolutional
neural network by learning a linear subspace in a Reproducing Kernel Hilbert Space [46] at each
layer from which feature maps are built using kernel compositions. Although the method intro-
duces new parameters that need to be learned during the backpropagation, its main advantage
is that it is able to overcome the main problem of using kernels with machine learning, namely
learning and data representation decoupling. The problems that the author tackled are image
classification and image super-resolution [47], and the results that were obtained outperform
approaches solely based on classical convolutional neural networks. Nevertheless, due to techni-
cal limitations, the kernel learning could not be tested on large networks and its main drawback
is that a pre-parametrized kernel function should be defined for each layer of the network.
However, Tran et al. [48] went even further by proposing a relaxation of the fundamental opera-
tions used in the multilayer perceptron model called Generalized Operational Perceptron (GOP)
which allows changes to the summation in the linear combination between weights and inputs
by any other operation such as median, maximum or product, and they call it a pool opera-
tor. Moreover, they propose the concept of nodal operators which basically applies a non-linear
function on the product between the weights and the inputs. They show that this configuration
surpasses the regular multilayer perceptron model on well-known classification problems, with
the same number of parameters, but with a slight increase in the computational complexity.
However, as a pool operator, a nodal operator and an activation function have to be chosen for
every neuron in every layer. As a result, they have devised an algorithm to construct a network
with the operators that are meant to minimize the loss chosen for any given problem. Never-
theless, the main limitation of the model is that such operators need to be created and specified
manually as an initial step, and that choosing an operator for every neuron is time-consuming.
This compulsory preliminary step has to be performed in order to be able to use the model and
to train it.

Kiranyaz et al. [49] extended the notion of GOP to 2-dimensional signals such as images and
created the Operational Neural Network (ONN) model which generalizes the 2D convolutions
to any non-linear operation without adding any new parameter. They prove that ONN models

can solve complex problems like image transformation, image denoising and image synthesis
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with a minimal topology, where CNN models fail to do so with the same topology and num-
ber of parameters. They also propose an algorithm that can create homogeneous layers (all
neurons inside the layer have the same pool operator, nodal operator and activation function)
and choose the operators that minimize any given loss, in a greedy fashion. However, the
aforementioned limitation still applies to the model since it is based on GOPs and the opera-
tor choosing algorithm does not take into account the intra-layer dependency of the so-called
operators. Therefore, they proposed the concept of generative neurons in [50] to approximate
nodal operators by adding learnable parameters into the network. While achieving comparable
results to the ONN model, they were unable to overcome the need to manually choose the pool
operator and the activation function.

As was discussed, works [41, 43, 45] still need to manually predetermine which kernel to use on
each layer, and works [48, 49, 50| need to predetermine, for each neuron, the nodal operator, the
pool operator and the activation function to use in order to create the network. The main gain
of the proposed 1IDPNN model is that there is no longer the need to search for a kernel that
produces good results, as the model itself approximates a problem-specific polynomial kernel

for each neuron.
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Chapter 3

1-Dimensional Polynomial Neural
Networks for Audio Signal Related

Problems

3.1 Introduction

We propose the IDPNN model which is an extension of the 1IDCNN model that uses polyno-
mial approximation to perform highly non-linear filtering from the first layer. We formulate the
forward propagation equation and the gradient estimations which allow the model to be trained
using the gradient descent algorithm. In addition, we provide a theoretical computational com-
plexity analysis to estimate how computationally complex a 1IDPNN is compared to a 1IDCNN.
Consequently, we describe the GPU implementation of the model and we empirically show that,
although the 1IDPNN model’s theoretical computational complexity is polynomial, the paral-
lel nature of the implementation enables a linearization of the model’s inference and learning
process. We also formalize a theorem that generates a 1IDCNN that has the same number of
parameters as a given 1IDPNN. Finally, we consider two classification problems, namely musical
note recognition and spoken digit recognition, to evaluate the IDPNN as a feature extractor
and one regression problem, audio signal denoising, to evaluate the IDPNN as a regressor. We
also evaluate the influence of various activation functions on the 1IDPNN model, and we devise
a model comparison strategy on every problem which allows us to estimate the efficiency of the
1IDPNN model compared to the 1IDCNN model.

Although the problems that are tackled can be efficiently solved using much more powerful
audio signal representations such as time-frequency representations and much more complex
models such as 2DCNNs [51] and RNNs, our objective is to illustrate how the 1IDPNN can in-
troduce just enough non-linearity to the IDCNN model to achieve better performance with less
spatial complexity and computational complexity thanks to the polynomial kernel estimation.

Therefore, comparing our model to the 2DCNN model, for example, can be problematic since
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the input of a 2DCNN is a 2-dimensional signal, and the input of a 1IDPNN is a 1-dimensional
signal which makes the information that both models have access to, completely different. Fur-
thermore, comparing our model to the RNN model would result in the same complication since
the internal definition of both models are fundamentally very different, although the information
that is accessed is the same. Hence, the model that shares the most common characteristics with
our proposed 1IDPNN is the IDCNN since the 1IDPNN extends it. As a result, our evaluation
methodology is based on comparing the performance, the computational complexity and the
spatial complexity of the IDPNN to that of the IDCNN under certain conditions, notably, the
equality of the number of trainable parameters or the equality of the performance evaluation.
Therefore, we chose not to create very deep and wide networks and to restrict our analysis to a
fairly manageable number of parameters due to technical limitations.

The outline of this chapter is as follows. Section 3.2 formulates the IDPNN model mathemat-
ically by detailing how the forward propagation and the backward propagation are performed
as well as providing a new way to initialize the weights and a detailed theoretical computa-
tional analysis of the model while Section 3.3 describes how it was implemented and tackles the
computational analysis from an experimental perspective. Section 3.4 describes in detail the

experiments that were conducted in order to evaluate the model, and shows its results.

3.2 Theoretical Framework

In this section, the background of the PNN model is presented and the 1IDPNN is formally
defined with its relevant hyperparameters, its trainable parameters and the way to train the
model with the gradient descent algorithm [2]. A theoretical analysis of the computational
complexity of the model is also made with respect to the complexity of the regular convolutional
model.

3.2.1 Preliminaries

As defined by Oh et al. [19], a PNN f takes a vector of N independent variables (1, ..., TN)
and estimates a single scalar output g as such:

§=f(x1,....xn) = co+ > i Try Y Chika Ty Ty + oy

k1 k1,ko
where ¢;’s are the coefficients of the model and ¢ is a polynomial expansion of the input vec-
tor (z1,...,zn) to a degree D. A PNN is constructed dynamically by determining a partial
description (PD) of each combination of r independent variables in the input vector. A PD
of two variables is a polynomial expansion to a given degree (or order) D’ where weights are
determined using the least square method applied on a given training data. For example, a PD
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2192 of x1 and x4 of order 2 can be expressed as such:
2 2
212 = ¢co + 11 + oo + c11X] + C22T5 + Cl12T1 X2,

Figure 3.1 (extracted from [19]) shows a PNN with » = 2 and D’ = 2. Every PD is then
evaluated on the test set and only a predetermined number of them are chosen to create a new
feature vector composed of the chosen PDs. The number of selected PDs can also be determined
with a performance cutoff value such that the PDs whose performances are below this value
are discarded. Following that, the same process applied on the input vector is repeated on the
feature vector consisting of the chosen PDs. The above steps are subsequently repeated until a
stopping criterion has been satisfied. After that, the node that produced the best approximation
is selected and all the nodes that are independent of it are discarded for inference. Therefore,
the degree D of the polynomial expansion of (x1, ..., xy) can be determined dynamically via the
depth of the network as well as the order of the PD used in the PNN. Although PNNs were used

Input variables Select PDs with the best performance/Stopping criterion model output

Y

|z, —{ Inputvariables | Polynomial order)—

: Z —> Z, Z, 2

Patial Description(PD)

Cn+ClZP+CZZq+(332 p-I-Z q+zpzq :

FIGURE 3.1: An overall architecture of the PNN [19].

to exploit non-linear relationships between independent features, they cannot be used efficiently
on ordered structures such as signals that have a causal relationship where each of their samples

are constructed using a process applied on all of the previous samples. Therefore, we propose
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the 1IDPNN model to remedy this drawback and to improve the non-linearity of the IDCNN

model.

3.2.2 1DPNN Model Definition

The aim is to create a network whose neurons can perform non-linear filtering using a Maclau-
rin series decomposition. For 1-Dimensional signals, a regular neuron in 1IDCNN performs a
convolution between its weight vector and its input vector whereas the neuron that needs to be
modeled for IDPNN should perform convolutions not only with its input vector but also with

its exponentiation as shown in Figure 3.2 below. In the following, we designate by L the number

FIGURE 3.2: A graphical representation of a IDPNN neuron.

of layers of a 1IDPNN. VI € [1, L], N, is the number of neurons in layer [, D; is the degree of
the Taylor decomposition of the neurons in layer [ and Vi € [1, N], yl(l) is the output vector of
neuron ¢ in layer [ considered as having 1 row and M; columns representing the output samples
indexed in [0, M; — 1]. We consider the input layer as layer | = 0 with Ny inputs in general (for
a single input network, Ny = 1). VI € [0, L], we construct the N; by M, matrix ¥; such that:
e
Yi=|:

!
N,

Vie[1,L],Y(i,5,d) € [1,N] x [1, Ni—1] x [1, Dl]],w,fjl-)d is the weight vector of neuron i in layer
[ corresponding to the exponent d and to the output of neuron j in layer [ — 1 considered as
having 1 row and K columns indexed in [0, K; — 1]. VI € [1, L],V(i,d) € [1, N,] x [1, D,], we
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construct the N;_; by K; matrix WZ-(C? such that:
l
wz(IZi
l .
W‘(d) = :

0
WiN,_,d

Vie[1,L],Vie[1,N] b is the bias of neuron i in layer [ and fi(l) is a differentiable function

P

called the activation function of neuron ¢ in layer [ such that y(l) = fz-(l) (x(-l)) where 7\ is the

i i i

pre-activation output of neuron ¢ in layer [.

Definition 3.2.1. The output of a neuron in the 1IDPNN is defined as such:
D,

i e [1,L],Vie [1,N], o = £ (Z Wi+ Y+ 65”) =" (=), (3.1)
d=1

where x is the convolution operator, Y}‘fl =Y 10---0Y._1, and ® is the Hadamard product.

d times
Remark 3.2.1. As stated above, the whole focus of this work is to learn the best polynomial
function in each neuron for a given problem, which is entirely defined by the weights VVi(é)
associated with Y;_1 to the power of d.

Remark 3.2.2. Since the 1IDPNN neuron creates a polynomial function using the weights VVZ.((?,
the activation function fz-(l) can seem unnecessary to define, and can be replaced by the identity
function. However, in the context of the 1IDPNN model, the activation function plays the role
of a bounding function, meaning that it can be used to control the range of the values of the

created polynomial function.

3.2.3 1DPNN Model Training

In order to enable the weights of the model to be updated so that it learns, we need to define a
loss function that measures whether the output of the network is close or far from the output
that is desired since it is a supervised model. We denote by Y the desired output, by Y the
output that is produced by the network, and by e (Y, }A/) the loss between the desired output
and the estimated output. € needs to be differentiable since the estimation of its derivative with
respect to different variables is the key of learning the weights due to the fact that gradient
descent is used as a numeric optimization technique.

3.2.3.1 Gradient Descent Algorithm

Given a function ¢ : RV x R” — RM where (M, N,P) € N**  the input is a tuple X =
(X1,..., Xy) € RN, and the parameters are § = (61, ...,0p); we consider a desired output from
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X given ¢ called Y where Y € RY. The objective is to estimate 6 so that € (Y, ¢ (X,0)) is
minimum where € : RM x R® — R, is a differentiable loss function. Gradient descent [52] is
an algorithm that iteratively estimates new values of 6 for T iterations or until a target loss ¢;
is attained. Vt € [0, 77,00 = (é%t), o éﬁ?) is the estimated value of # at iteration ¢. Given an
initial value é(o), and a learning rate n € (0, 1], the gradient descent estimations are

e 0.7 1,0 =090 yye (39)

where Ve (é(t)> is the gradient of € with respect to 6 applied on 0® . Tn the case of the 1DPNN,
the parameters are the weights and the biases, so there is a need to estimate the weight gradients

0
% and the bias derivatives —El, Vi e [1,L],Y(i,j,d) € [1,N)] x [1,Ni_1] x [1, D,].
awijd 8b§)

3.2.3.2 Weight Gradient Estimation

In order for the weights to be updated using the Gradient Descent algorithm, there is a need to
estimate the contribution of each weight of each neuron in the loss by means of calculating the

gradient.

Proposition 3.2.1. The gradient of the loss with respect to the weights of a 1IDPNN neuron

can be estimated using the following formula:

Vi e [1, L], Y, j,d) € [1, N x [1, Ni1] % [1, D,

Oe Oe 8yl(l) (1-1) d Oe (1-1) d (32>
- (Zro 2] )= 2o i)

8w§jl-)d B 83/@-([) 8955[) 83:'1(-1) ’
where
oy of®
L - Ofi (xl(l)) is the derivative of the activation function of neuron i in layer | with

ozd ozh
@

respect to x;’; and

0
. 82) is the gradient of the loss with respect to the output of neuron i in layer [, that we
Y

call the output gradient.

Proof. To estimate the weight gradients, we use the chain-rule such that:

Vi€ [1, L1, Y(i, 5.k d) € [1, M] x [1, Ni] % [0, K — 1] x [1, D],

De Ml—l( de @3%([))( ) Oy (3.3)

= 2\ ©0.0) " ™
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From Eq. (3.1), we can write:
Vie[1,L],¥(i,m,d) € [1, N;] x [0, M; — 1] x [1, D],
0 S o -1\ %
€; (m) = Z Z Z wij/d/(k,) (y]/ ) <m+ k,),
j'=1d'=1 k'=0
from which we deduce:
Vi e ﬂl,L]],V(i,j,m,k, d) € [[LNZ]] X [[17le1]] X [[OﬂMl - 1]] X H07Kl - 1]] X [[1>Dl]]7
otV 1\ d (3.4)
() = () o+ )
Oy (k) ™)
When injecting Eq. (3.4) in Eq. (3.3), we find that:
Vi e Hl,L]],V(Z,],k,d) € [[17Nl]] X [[17le1]] X [[07[(1 - 1]] X [[LDZ]]a
e Mt ge gy Y
—(k) = —— O —= | (m). (y; (m+ k),
o= 5 (e o) - 61 v
which is equivalent to:
vie [[17L]],V(Z7j,d) € [[17Nl]] X [[LNZ—I]] X [[]-?Dl]]v
) de oy pd D iy (3.5)
7 = ( 00w | ) = e ()
Ow;jq Ay, ox; Ox,
[

Remark 3.2.3. The weight gradient estimation of a 1IDPNN neuron is equivalent to that of a

1DCNN neuron when Dy = 1. This was to be expected as the former is only a mere extension

of the latter.

Remark 3.2.4. The output gradient can easily be determined for the last layer since V=Y,

which makes the loss directly dependent on Y. However, it can not be determined as easily for

the other layers since the loss is indirectly dependent on their outputs.

3.2.3.3 Output Gradient Estimation

As stated in Remark 3.2.4, there is a need to find a way to estimate the gradient of the loss with

respect to the inner layers’ outputs in order to estimate the weight gradients of their neurons

as in Eq. (3.2).
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Proposition 3.2.2. The output gradient of a neuron in an inner layer can be estimated using

the following formula:

vie[1,L—1],5 € [1,N],

o

Oe D, Nita (I1+1) Oe ) d—1 (3.6)
dy;” 2| & 0V (4")
where
- ke 0, K - 1]]’@(;’;1)(]{7) = wgézl)(Kl+1 —1—k); and
° Oe .
Oe w(m—fﬁﬂ) if me Ky, Mg+ Ky — 1]
° vm S [[07 Ml - 1]]7 W(m) = &L’l ‘
o 0 else

Proof. Since Y;,; is directly computed from Y;, VI € [1, L — 1], we can assume that ultimately,
the last layer’s output Y7 is totally dependent on Y;,; so that we can write:

Ve[l L—1]e(Y.V) = e(Y,vn (Vi) (3.7)

where Y is a given desired output and ;1 is the application of Eq. (3.1) from layer [ + 1 to
layer L. From Eq. (3.7) we can write the differential of € as such:

Niv1 o 9e

i=1 0Y;

® dyh. (3.8)

We can then derive the general expression of the output gradient of any neuron in layer [ as

such:
e Nf Oe ay(lJrl) Nlil e ay(lﬂ) ax(l+1)
Vie[l,L-1],7€[,N],— = © —= = OO ——.
ayj(l) — 8%(1—&-1) ay](l) — ayz(l—kl) (%El“) 8%@

This expression can be qualitatively interpreted as finding the contribution of each sample in
y](-l) in the loss by finding its contribution to every output vector in layer [ 4+ 1. Considering a

layer [ € [1, L — 1], a neuron j in layer [, and a neuron ¢ in layer [ + 1, a sample m € [0, M; — 1]

in 5 (1+1)

jl contributes to x; in the following samples:

S [[1,[/ - 1]],V(i,m, k,d) € [[1,Nl+1]] X [[O,Ml — 1]] X [[klmakzmﬂ X [[17Dl+1]]7
N; Dy Kjp—1

A=) = 350 S i) () m k),

/=1 d=1 k=0
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where Vi € [1, L — 1], kyyn, = max (0,m — M1 + 1) and kj,, = min (m, K;.; — 1). We can then

(I+1)

determine the exact contributions of yj(»l)(m) in z; ' as such:

Vi € [[1 L— 1]] V(Z j,m k d) [[1 Nl+1]] X [[LNZ]] X [[O, Ml — 1]] X [[klmakzm]] X [[17Dl+1]]7
813('l+1 Dy

wz+1 ()41 m).
oy (m ) Zd o ( ) )
(3.9)

Therefore, we can finally determine the full expression of the output gradient for each sample:

Vi€ [1,L—1],(j,m) € [1,N] x [0, M, — 1],

Oe Ni Kim - Dy Oe 8y(l+1 d—1
-y Y Zd( w0 © oy | (m = B (k) (87) (m).

3% i=1 k=ky,, d=1 8%

(3.10)

Eq. (3.10) can be decomposed as the sum along i and d of the product of ( ()> with the

Oe
correlation between W and wzjzlrl the correlation being a rotated version of the convolution

where the samples of the weights are considered in an inverted order to that of the convolution.

Therefore, a correlation can be transformed into a convolution by considering the rotated weights

- (I41)

ija ~ defined as such:

VE € [0, Kipq — 1], @ (k) = wl Y (K — 1 - k).

ijd z]d

However, we can only perform a valid convolution when k;,,, = 0 and kj,, = Kl+1 — 1. Thus, to

obtain a valid convolution otherwise, we consider the zero-padded version of ﬁ designated
by —°  and defined h:
ywan efined as such:
; O~ i) if m € [Kivr Myss + Kioy — 1]
Oe oD T ) npm 1415 M1 I+1 —
VYm € [0, M; — 1], sy (m) = { Ox; _
i 0 else

Finally, we can obtain the desired expression by considering the rotated version of the weights,
and the zero-padded version of the gradient of the error with respect to xElH) in Eq. (3.10). W

Remark 3.2.5. The main difference between the output gradient estimation of a 1IDPNN inner
layer’s neuron and that of a 1IDCNN inner layer’s neuron is that in the former, the gradient
depends on the output values of the considered layer and in the latter, it does not. By injecting
Eq. (3.6) in Eq. (3.2), we notice that, unlike a 1DCNN neuron, the weight gradient of a IDPNN
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inner layer’s neuron carry the information of its output values as well as its previous layer’s

output values.

3.2.3.4 Bias Gradient Estimation

The bias is a parameter whose contribution to the loss needs to be estimated in order to properly

train the model.

Proposition 3.2.3. The bias gradient of a IDPNN neuron can be estimated using the following

formula:

86 M;—1 86 ay(l) M;—1 86
Vie[1,L],Vie [1,N], - = 9€ 5% () = e
[1, L] [1, Ni] 2 mZ::O (8%@ 920 (m) mX::O aIy)( )

(2

Proof. Using the differential of ¢, we can determine the gradient of the loss with respect to the

bias as such:

, de M oe oy ozl
Vi € [1, L], Vi € [1, N, W0 mz:o (aya) © 90 © 20 (m).
0
And since from Eq. (3.1), we can notice that p —(m) = 1,Vl € [1,L],Y(i,m) € [1,N] x

[0, M; — 1], we obtain the desired expression. |

Remark 3.2.6. The bias gradient formula of a 1IDPNN neuron is the same as that of a IDCNN

neuron regardless of the degree of the polynomial approximation.

3.2.3.5 Training Procedure

Given a tuple (X,Y") representing an input and a desired output, we generate % using a defined

0
architecture of the 1DPNN, then calculate 876 directly from the loss expression, in order to
L

0
determine the weight gradients and the bias gradients for the output layer. Then using 876
L

and Eq. (3.6), calculate the output gradients, the weight gradients and the bias gradients of the
previous layer. Repeat the process until reaching the first layer. After computing the gradients,
we use gradient descent to update the weights as such:

(1) Oe
) —n—a (3.11)

Wijq

.. (t+1)
Vi€ [1,L],¥(,j,d) € [1, Ni] x [1, Nia] x [1, D], (wi) ™ = (wi)
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where 7 is the learning rate and t is the epoch. The same goes for the updating the biases:

| ) _an® | 0
vie 1,1 vi e L (60) " = (60) "~

3.2.4 1DPNN Weight Initialization

Since the 1IDPNN model uses polynomials to generate non-linear filtering, it is highly likely
that, due to the fact that every feature map of every layer is raised to a power higher than
1, the weight updates become exponentially big (gradient explosion) or exponentially small
(gradient vanishing), depending on the nature of the activation functions that are used. To
remedy that, the weights have to be initialized in a way that the highest power of any feature
map is associated with the lowest weight values.

Definition 3.2.2. Let R(«ay),l € [1, L] be a probability law with a parameter vector oy used to

initialize the weights of any layer l. The proposed weight initialization is defined as such:

Vi e [1, L], (i,4,d) € [1, Ni] x [1, Nioa] x [1, Di], wiy ~ Rgf‘l).

Remark 3.2.7. This initialization offers the advantage of allowing the use of any known deep-
learning initialization scheme such as the Glorot Normalized Uniform Initialization [53] while
adapting it to the weights associated with any degree. However, this does not ensure that there
will be no gradient explosion as it only provides an initial insight on how the weights should
evolve. Completely avoiding gradient explosion can be achieved by either choosing activation
functions bounded between -1 and 1, by performing weight or gradient clipping or by using

weight or activity reqularization.

3.2.5 1DPNN Theoretical Computational Complexity Analysis

The use of polynomial approximations in the 1IDPNN model introduces a level of complexity
that has to be quantified in order to estimate the gain of using it against using the regular
convolutional model. Therefore, a thorough analysis is conducted with the aim to determine the
complexity of the IDPNN model with respect to the complexity of the IDCNN model for both
the forward propagation and the learning process (forward propagation + backpropagation).

Definition 3.2.3. Let v be a mathematical expression that can be brought to a combination
of summations and products. We define C as a function that takes as input a mathematical
expression such as v and outputs an integer designating the number of operations performed to
calculate that expression so that C(y) € N.
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Example 1. Let N € N* and’y-Z@‘3 then C(y) = 2N + N — 1 = 3N — 1 because N — 1

summations are performed, and 2 pmducts are performed N times.

Example 2. Vz € C,0 < C(2) < 2 because a complex number can be written as z = a +
ib, (a,b) € R

Remark 3.2.8. C does not take into account any possible optimization such as the one for the
exponentiation in Example 1 which can have a complexity of O(logy m) where m is the exponent,
nor does it take into account any possible simplification of a mathematical expression such as
N N2(N +1)?

S i3 = ——~———2 . Therefore, C provides an upper bound complexity that is independent of

la_nljy implemen%ation.

Since the smallest computational unit in both models is the neuron, the complexity is calculated
at its level for every operation performed during the forward propagation and the backpropaga-
tion. Moreover, every 1IDPNN operation’s complexity denoted by C, is calculated as a function
of the corresponding 1IDCNN operation’s complexity denoted by C,. since the aim is to compare
both models with each other.

3.2.5.1 Forward Propagation Complexity

The forward propagation complexity is a measure relevant to the estimation of how complex
a trained IDPNN neuron is and can provide an insight on how complex it is to use a trained
model compared to using a trained 1IDCNN model.

Proposition 3.2.4. The computational complexity of a IDPNN neuron’s forward propagation
with respect to that of a IDCNN neuron is given by the following formula:

1
Vi € [[1,L]],VZ S [[LNZ]]an (yz(l)> = D;C. (yz(l)) + (Dl — 1) (2M1_1NZ_1D1 — 2Ml> . (312)

Proof. The 1DPNN forward propagation is fully defined by Eq. (3.1), which can also be in-
terpreted as the 1IDCNN forward propagation if the degree of the polynomials is 1. Therefore,
we can determine the 1IDPNN complexity as a function of the IDCNN complexity by first
determining the complexity of xl(l) before adding the biases as such:

Vi e [1,L],Vi € [1,N],
C, (xl(l) - bg”) = % (CC (argl) - bz('l)> +(d— 1)Ml—lNl—l> =D,C, (335[) - bz(l)> (3.13)
d=1

1
+ §D1(Dl — 1)Ml_1Nl_1.
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Assuming that the activation functions are atomic meaning that their complexity is O(1), we

have:
(o) = (o~ H") + b
. C.(v") =c.(z")+ M
vie[1,L],Vie[1,N], c,,gxg”)) _C,,Exg”> b§l>;+M (3.14)
Co(u) =C () + M,

By using the relationships in Eq. (3.14) in Eq. (3.13), we obtain the desired expression. |

Remark 3.2.9. FEq. (3.12) shows that the forward propagation’s complexity of the 1IDPNN
does not scale linearly with the degrees of the polynomials, which means that a 1DPNN neuron
with degree Dy is more computationally complex than D; 1DCNN neurons despite having less
trainable parameters (same number of weights but only 1 bias). However, this complexity can
become linear since Y%, can be calculated only once, stored in memory and used for all neurons

in layer [.

3.2.5.2 Learning Complexity

The learning complexity is a measure relevant to the estimation of how complex it is to train a
IDPNN neuron and can provide an overall insight on how complex a model is to train compared
to training a 1IDCNN model. Since the learning process of the inner layers’ neurons is more
complex than the output layer’s neurons, which can learn faster by estimating the output
gradient directly from the loss function, the learning complexity will only be determined for the

inner layers’ neurons.

Proposition 3.2.5. The computational complexity of the learning process of a 1DPNN inner
layer’s neuron denoted by El(f) s given by the following formula:

1
Vie[l,L— 1]],51()1) = Dl,cg) +(D; — 1) ((MHNH + 2Ml> D, — Ml) , (3.15)

where LY is the learning complexity of a 1IDCNN neuron in a layer 1.

C

Proof. The difference between the two models in the backpropagation phase resides in the weight
gradient estimation and the output gradient estimation. In fact, the bias gradient estimation is
the same for both models so there is no need to quantify its complexity. Since the weight gradient
estimation is dependent on the output gradient estimation, the output gradient estimation will

be quantified first. From Eq.(3.6), we can quantify the output gradient estimation complexity
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for the IDPNN model as :

Vie[l,L—1],j€[1,N],

() () ) o) e (3

1
+ 5D+ 2)(Di = )M,

Since the 1IDPNN neuron introduces D; times more weights than the 1IDCNN neuron, the
complexity of calculating the weight gradients for a pair of neurons (7, j) as in Eq. (3.2) is the

sum of their corresponding weight gradients with respect to the degree, as:

Vi e [1,L],Y(i,5) € [1,N] x [1, Ni_1],

Oe D Oe D Oe Oe
C,| —= | = C,| —= | = Col— | +d-1M_1| =D,C.| —
(o) =20 () = (i) + o) =0 (5

1
+ 5 Di(Dy = )My,

Since one 1DPNN neuron in a layer [ has D, times more weights than a 1IDCNN neuron, its
weight update complexity is D; times that of the 1IDCNN. Therefore, the complexity of Eq.
(3.11) is

L (t+1) (t+1)
Vi e [1,L],V(,7) € [1,Ni] x [1,N;-4],C, ((wl(;)) > _ D, ((wg)) ) ‘

From the above expressions, we can determine the learning complexity of any neuron which will
be the sum of the forward propagation complexity and the backward propagation complexity.
Therefore, the learning complexity denoted by E - of a IDPNN inner layer’s neuron is:

Vi1, L—1],i€[1,N],L)) =C, (v") +C, (aa‘(fl)>+Nf (cp (85’6( >+c (< EJ;))(HU))'
Y =1 w

% J= i

Since we suppose that the network is fully connected, ﬁ;{)i does not depend on ¢, thus we can
replace it by ,Cg). Therefore, by replacing each complexity in the above equation by their full
expressions, we obtain the desired expression where:

Ni—1
i€ L L-1]ie[L,N].LY =C. (y§l))+cc< . >+ > e L (@)7))-
89 owV

(]
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3.3 Implementation

This section describes the application programming interface (API) used to implement the
1DPNN model as well as an evaluation of the implementation in the form of an experimental

computational complexity analysis for the forward propagation and the learning process of a
1DPNN neuron.

3.3.1 Keras Tensorflow API Implementation

Tensorflow [54] is an API created by Google that is widely used for graphics processing unit
(GPU)-based symbolic computation and especially for neural networks. It allows the imple-
mentation of a wide range of models and automatically takes into account the usual derivatives
without the need to define them manually. However, Tensorflow is a low-level API that involves
a lot of coding and memory management to define a simple model. The IDPNN model is mainly
based on convolutions between inputs and filters, so it can be considered as an extension of the
basic 1IDCNN with slight changes. Therefore, there is no need to use such a low-level API like
Tensorflow or CUDA [55] to define the 1IDPNN, so the Keras API was used to implement the
model.

Keras [56] is a high level API built on top of Tensorflow that provides an abstraction of the in-
ternal operations performed to compute gradients or anything related. Keras makes it possible
to build a network as a combination of layers whether they are stacked sequentially or not. It
uses the concept of layers which is the key element to perform any operation. This allows the
definition of custom layers that can be jointly used with predefined layers, thus, allowing the
creation of a heterogeneous network composed of different types of layers. In Keras, there is
only the need to define the forward propagation of 1IDPNN since convolutions and exponents
are considered basic operations, and the API takes care of storing the gradients and using them
to calculate the weight updates.

3.3.2 Experimental Computational Complexity Analysis

In order to evaluate the efficiency of the implementation, we compare the forward propagation
complexity and the learning process complexity of a IDPNN neuron with respect to the theoret-
ical upper bound complexities determined in Section 3.2.5, as well as with a IDCNN neuron’s
complexity, and a 1DPNN-equivalent neuron by varying the degrees of the polynomials in a
given range. This experimental analysis is designed to show that the theoretical complexity is
indeed an upper bound and that, as stated in Section 3.2.5, a IDPNN neuron with a degree
D is actually more complex than D 1DCNN neurons, which is the genesis of the idea of a
1DPNN-equivalent neuron.
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3.3.2.1 1DPNN-Equivalent Network

Theorem 3.3.1. Any 1DPNN with L > 1 layers can be transformed into a 1DCNN with L+ 1
layers that has the same number of parameters as the 1IDPNN.

Proof. Let L € N* be the number of layers of a IDPNN and VI € [1, L+1], let N/ be the number
of neurons in a 1IDCNN layer. Given any inner 1DPNN layer, we can create a 1IDCNN layer
that has the same number of parameters using the equality between the number of parameters

of each model’s layer as such:
VZ € [[1,[/ - 1H,N{N{_1Kl + Nl/ - NlNl—lKlDl + Nl,
where NV)=IN since the input layer remains the same. We then determine V] from that equation

as follows:

N(N_ KDy +1) 1
Vi 1,L —1], N/ = — 3.16
S [[ ) ]]7 l Nl/—lKl+1 +2 ) ( )

where N/ is rounded by adding 1/2 and applying the floor function since it should be an integer.
If we determine N; in the same manner as we determine the number of neurons in the inner
layers, we will change the number of neurons in the output layer of the IDCNN, which is not a
desired effect. To remedy that problem, we add another IDCNN layer with N7, = N neurons
having a filter size of 1 in the IDCNN, and we adjust the number of neurons in layer L so that
the number of parameters in layer L and layer L + 1 equals the number of parameters in the
1DPNN layer L using the following equality:

N)N, Ky + Nj + NN} + N, = NN, 1K Dy, + Ny.

By extracting N; from this expression and by rounding it, we end up with

NiN;_1K;D 1
_ ,L P L (3.17)
N; Kp+Np+1 2

Ng
n

Remark 3.3.1. We call any 1IDCNN recurrently constructed using the aforementioned theorem
and Eqs. (3.16) and (3.17) a 1DPNN-equivalent network because it has the same number of
parameters as the IDPNN it was constructed from. However, their respective search spaces and

computational complexities are generally not equivalent.
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!/

N 1
Remark 3.3.2. In a 1DPNN having only 1 layer (L = 1), LVL + QJ IDCNN neurons are
L

considered equivalent to only one 1DPNN neuron, and thus comes the concept of a 1DPNN-
equivalent neuron. Comparing a 1DPNN neuron with its equivalent 1IDCNN neuron is indeed
helpful to determine the gain or loss of using one over the other by providing an insight on how
to estimate the balance between searching features in a more complex search space and searching

less complex features in less time.

3.3.2.2 Experimental Setup

Since the implementation is GPU-based, it is very difficult to estimate the actual execution
time of a mathematical operation since it can be split among parallel execution kernels and
since the memory bandwidth greatly impacts it. Nevertheless, for a given amount of data, we
can roughly estimate how fast a mathematical operation was performed by running it multiple
times and averaging. However, that estimate also includes accesses to the memory which are
the slowest operations that can run on a GPU.

Despite this limitation, a rough estimate is used to determine the execution times of a IDPNN
neuron, a 1DCNN neuron and a 1DPNN-equivalent neuron with different hyperparameters.
Various networks with 2 layers serving as a basis for the complexity estimation are created with
the hyperparameters defined in Table 3.1 below. Recall that NV, is the number of neurons in
layer [, M; is the number of samples of the signals created from the neurons of layer [, K is
the kernel size of the neurons in layer [ and D; is the degree of the polynomials that need to

be estimated for each neuron in layer [. Since the output layer is a single 1IDCNN neuron, its

TABLE 3.1: Hyperparameters for each layer of the networks used for the complexity

estimation.
Layer
Hyperparameter =0 [=1 =2
M, 100 76 52
N 2 10 1
K, - 25 25
D - [1,100] 1

execution time can be estimated separately from the first layer. That time will then be deducted
from the overall execution time of the network. Subsequently, for each degree of polynomials
in the previous set of hyperparameters, a 1IDPNN is created, as well as its equivalent 1IDCNN
counterpart. 1000 forward propagations are first performed, then 1000 learning cycles (forward
propagation and backpropagation) are performed. The execution times for 1 neuron are then
estimated by deducting the average execution times of the last layer and then averaging over
1000 and dividing by Nj.

The theoretical complexities determined in Egs. (3.12) and (3.15) are expressed in terms of
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number of operations and need to be expressed in seconds. Therefore, given the execution
times of the 1IDPNN with D; = 1, we can estimate how long it would theoretically take to
perform the same operations with a different polynomial degree. For instance, we can estimate
the time 77 it takes to perform a forward propagation as a function of the polynomial degree
D, using Eq. (3.12) as such:

VD, € [[1, 100]], Tl(Dl) = DTy + (D1 — 1) (ClDl — Cg) T,

where

o Tj is the forward propagation execution time of a IDCNN neuron,
1

e = §MON07

e o =2M;, and

e T is an estimate of the time it takes to perform one addition or one multiplication.

T can only be estimated from the fact that 7T} is an increasing function of D; which means that

aT
VD, € [1,100], 871(1)1) =Ty + (2¢1Dy — (¢1 + ) T > 0.
1

This is equivalent to:

1p
C1+ Cy — 201D1 '

VD, € [1,100],T >

Since ¢; + ¢o — 2¢1 Dy is a decreasing function of Dy, the final estimation of T is

T
="
C1 + C2

The same can be done for the theoretical learning complexity defined in Eq. (3.15) by replacing

c1, ¢ and Ty accordingly.

3.3.2.3 Results

Figure 3.3 shows the evolution of the execution time of a neuron’s forward propagation with
respect to the degree of the polynomial for each of the IDCNN neuron, 1IDPNN neuron and
1DPNN-equivalent neuron. Figure 3.3(a) also shows the evolution of the theoretical complexity
with respect to the degree. This confirms that Eq. (3.12) is indeed an upper bound complexity
and that, with optimization, the forward propagation of a 1IDPNN neuron can run in quasi-
linear time as shown in Figure 3.3(b). Moreover, with the chosen hyperparameters, the IDPNN
neuron is, on average, 1.94 times slower than the 1DPNN-equivalent neuron, which confirms
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the expectation that a 1IDPNN neuron is more complex than a 1IDPNN-equivalent neuron.

Figure 3.4 shows the evolution of the execution time of neuron’s learning process with respect
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FI1GURE 3.3: Forward propagation execution time for 1 neuron of each network.

to the degree of the polynomial for each of the 1IDCNN neuron, 1IDPNN neuron and 1DPNN-
equivalent neuron. Figure 3.4(a) showing the evolution of the theoretical complexity with respect
to the degree confirms that Eq. (3.15) is in fact an upper bound, and Figure 3.4(b) shows that
the learning process of a IDPNN neuron can also run in quasi-linear time, as stated in Section
3.2.5. However, the IDPNN neuron’s learning process is, on average, 2.72 times slower than the
IDPNN-equivalent neuron, as it is to be expected from Eq. (3.15).
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FIGURE 3.4: Learning process execution time for 1 neuron of each network.

3.4 Experiments And Results

Since 1IDPNN is basically an extension of 1IDCNN, there is a need to compare our proposed
model’s performance with the 1IDCNN model’s performance under certain conditions. In fact,
the number of parameters in a 1DPNN differs from the number of parameters in a 1IDCNN
with the same topology, and the computational complexity of a 1IDPNN is higher than the
computational complexity of a 1IDPNN-equivalent 1IDCNN. Hence, we devised 3 strategies that
to compare the two models, IDPNN and 1DCNN:
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1. Topology-wise comparison which consists in comparing the performances of a IDCNN
and a 1IDPNN that have the same topology.

2. Parameter-wise comparison which consists in comparing the performances of a IDCNN
and a 1IDPNN that have the same number of parameters. The 1IDCNN is created according
to the definition of the IDPNN-equivalent network detailed in Section 3.3.2.

3. Performance-wise comparison which consists in comparing the spatial and the com-
putational complexities of a IDCNN and a 1DPNN that achieve equal or nearly equal
performance based on an evaluation metric. A performance-wise network is constructed
by gradually adding neurons to the layers of a 1IDPNN-equivalent network until reaching

the same performance as the reference 1DPNN.

Figure 3.5 shows an overview of the methodology used to evaluate the 1DPNNs performance.
Both models were evaluated on the same problems consisting of 2 classification problems which

10-fold CV : : 10-fold CV : i Best 1DPNN

Train 1DPNN : : Train 1DCNN Evaluate networks

! ' ' >
with tanh ! ! with same H ind
q il ' > on winaows
Train 1DPNN]| ! : fopelagy _—|—>
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- C . ; - 1
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FI1GURE 3.5: Block diagram of the experimental methodology.

are musical note recognition on monophonic instrumental audio signals and spoken digit recog-
nition; and 1 regression problem, audio signal denoising at Odb Signal-to-Noise Ratio (SNR)
with Additive White Gaussian Noise (AWGN). Moreover, the spatio-temporal complexities of
the IDPNN and the 3 architectures of IDCNN were evaluated on each problem. The same
learning rate (107?) and the same gradient optimizer (ADAM [57]) were used for all networks
on any given problem. Furthermore, we also experimentally studied the influence of the acti-
vation function on the performance and convergence of the 1IDPNN since the presence of the
term (yj(l_l))d in Eq. (3.2) and the term (yj(»l))d_l in Eq. (3.6) strongly suggests that a gradient
explosion is very likely to occur during training if the activation function is not bounded. As a

result, we chose to evaluate the influence of the following activation functions on the 1IDPNN:
1. Tangent hyperbolic which is bounded between —1 and 1.

2. Softsign [31] which is also bounded between —1 and 1 but has a higher saturation limit
than the tangent hyperbolic.
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3. Rectified Linear Unit (ReLU) [32] which produces a sparse representation of features due

to its hard saturation to zero for negative values and its linear output for positive values.

4. Swish [34] which circumvents the hard saturation of the ReLU to allow for more flexibility

during learning.

Since the audio signals are bounded between —1 and 1 and ReLLU and Swish are highly likely
to nullify a negative input, the signals are normalized between 0 and 1 when these activation
functions are used.

All problems involve 1 dimensional audio signals sampled at a given sampling rate and with
a specific number of samples. However, the datasets used for the experiments contain either
signals that have a high number of samples, or signals that have different numbers of samples
inside the same dataset. Due to technical limitations, creating a network that takes a high
number of samples as input or different number of samples per signal is time-consuming and
irrelevant because the main aim of the experiments is to compare both models with each other,
and not to produce state-of-the-art results on the considered problems. Therefore, the sliding
window technique described below has been adopted for both problems as a preprocessing step.
In the following experiments, PN N Layer(x,y, z, f) refers to a PNN layer having = neurons,
a mask size y, a polynomial degree z, and an activation function f. ConvlD(z,y, f) refers to
a convolutional layer having x neurons, a mask size y, and an activation function f. Finally,
MLP(x, f) refers to a multilayer perceptron layer with = neurons, and an activation function

f.

3.4.1 Sliding Window Technique

The sliding window technique consists of applying a sliding observation window on a signal to
extract a certain number of consecutive samples with a certain overlap between two consecutive
windows. Usually, the samples that are contained in an observation window are multiplied
by certain weights that constitute a window function. The technique is useful when dealing
with signals that have a high number of samples and when studying a locally stationary signal
property (such as the frequency of a tone which lasts for a certain duration).

Definition 3.4.1. Let x = (zg,...,xnx_1) € RY be a temporal signal. Let w € [1, N] be the
size of the window. Let av € [0,1] be the overlap ratio between two consecutive windows. Let
h = (ho, ..., hp—1) € [0,1]" be a window function. We define Wy, o(h,x) as the set of all the
observed windows for the signal x with respect to the window function h, and we express it as
such:

]/Vw’o{<h7 x) = {(hoxi, cen) hw71$i+w—1)|i = Ln(l - O‘)wj’n € [[0’ {“j\f__oj;ij]]}
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Remark 3.4.1. The sliding window has the effect of widening the spectrum of the signal due
to the Heisenberg-Gabor uncertainty principle [58], thus, distorting it in a certain measure.
Therefore, the size of the window and the window function have to be chosen so that a given
observation window of the signal can respectively contain enough information to process it ac-
cordingly, and as less distortion as possible to preserve the spectral integrity of the original

signal. The window function used for all the problems is the Hamming window [59].

3.4.2 Classification Problems

Since IDPNN and 1DCNN are based on convolutions, they are basically used as regressors in the
form of feature extractors. Their objective is to extract temporal features that will be used to
classify the signals. In the case of this work, they are used to create a feature extractor block that
will be linked to a classifier which will classify the input signals based on the features extracted
as described in Figure 3.6, where = is a temporal signal, (fi,..., f,) are p features extracted
using either IDPNN or 1IDCNN, and (¢, ...c,) are probabilities describing whether the signal
x belongs to a certain class (there are ¢ classes in general). The classifier will be a multilayer
perceptron (MLP) in both problems and the metric used to evaluate the performance of the
models is the classification accuracy. However, since the sliding window technique is used on all

—>» f; ——>» C4
X : :
—> Feature ' }—> Classifier '
extraction : :
——> fp ——» C

q

FI1GURE 3.6: Block diagram of the classification procedure.

signals, the classifier will only be able to classify one window at a time. Therefore, for a given
signal x, a window size w, an overlap ratio a and a window function A as defined in the previous
subsection, we obtain |W,, (h, x)| different classes for the same signal, where |W,, (h,x)| is
the cardinal of W, o(h, z). Thus, we define the class of the signal as the statistical mode of all
the classes, estimated from every window extracted from the signal. For instance, if we have 3
classes and a signal gets decomposed in 10 windows such that 5 windows are classified as class
0, 2 windows as class 1, and 3 windows as class 2, the signal will be classified as class 0 since it
is the class that occurs most frequently in the estimated classes. As a result, the performance of

each model is evaluated with respect to the per-window accuracy and the per-signal accuracy.

3.4.2.1 Note Recognition on Monophonic Instrumental Audio Signals

The dataset used for this problem is NSynth [20] which is a large scale dataset of annotated
musical notes produced by various instruments. It contains more than 300,000 signals sampled
at 16kHz, and lasting 4 seconds each. The usual musical range is composed of 88 different notes
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which represent our classes. Since the dataset is huge, we only use 12,678 signals for training,
and 4096 for testing. We also use a sliding window with a window size w = 1600 (100ms) and
an overlap of 0.5 which makes the training set composed of 728,828 signals and the test set
composed of 235,480 signals. We then use 10-fold cross validation [60] on the training set so
that we estimate the average performance for every topology used on the test set. Four different

networks were created:
1. A network composed of a IDPNN feature extractor.

2. A network composed of a IDCNN feature extractor with the same topology as the previous

one.

3. A network composed of a 1IDPNN-equivalent feature extractor with the same number of
parameters as the 1IDPNN.

4. A network composed of a IDCNN feature extractor that achieves the same accuracy as
the IDPNN.

Table 3.2 shows the hyperparameters of each layer of the 1IDPNN, the IDPNN-equivalent net-
work, and the performance-equivalent network. The 1DPNN is trained on the windows extracted

TABLE 3.2: Networks’ topologies for note recognition.

1DPNN 1DPNN-equivalent network Performance-equivalent

network
PNNLayer(12, 49, 1, tanh) Conv1D(12, 49, tanh) Conv1D(18, 49, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 25, 1, tanh) Conv1D(12, 25, tanh) Conv1D(14, 25, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 13, 2, tanh) Conv1D(24, 13, tanh) Conv1D(24, 13, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 7, 3, tanh) Conv1D(26, 7, tanh) Conv1D(26, 7, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 3, 5, tanh) Conv1D(12, 3, tanh) Conv1D(12, 3, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
Flatten Flatten Flatten

MLP(96, ReLU)
MLP (88, softmax)

MLP(96, ReLU)
MLP (88, softmax)

MLP(96, ReLU)
MLP (88, softmax)

from the signals with the activation functions presented in Section 3.4 and the 10-fold statistics
are reported in Table 3.3 below. The results show that the IDPNN with the tangent hyperbolic
activation function achieves the highest minimum, maximum and average accuracy overall and
that the Swish activation function is indeed a better alternative than ReLU due to its flexibility
in processing negative values [34]. However, during the experiments, both ReLLU and Swish
exhibited unstable behavior in the first epochs of training which was expected due to the fact
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that very high weight updates occur when the network begins learning. This reinforces the need
for a bounded activation function when using the 1IDPNN. The networks in Table 3.2 use the

TABLE 3.3: Accuracy per window for each activation function for note recognition over
10 folds.

Activation function

Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 84.73 84.39 82.34 83.62
Maximum accuracy 86.03 85.7 82.91 85.11
Average accuracy 85.11 85.02 82.42 84.2

tangent hyperbolic function and are also trained on the windows extracted from the signals, and
their minimum, maximum and average accuracy over the 10-fold cross validation are reported
in Table 3.4 below in percentages. We can see that the average accuracy per window of the
1DPNN is slightly better than the other networks, except the performance-equivalent one.

TABLE 3.4: Accuracy per window for each network for note recognition over 10 folds.

Network
Statistic (%) 1IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum accuracy 84.73 83.84 84.6 84.82
Maximum accuracy 86.03 84.91 85.17 86.07
Average accuracy 85.11 84.47 84.93 85.2

Figure 3.7 also shows that 91% of the time, over 200 epochs, the average accuracy of the IDPNN
is higher than the 1IDPNN-equivalent network. Moreover, the evolution of the average accuracy
is very smooth and the 1IDPNN shows a slightly faster convergence in the first 50 epochs.

The networks are evaluated on whether they can classify a window from a signal correctly,
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FIGURE 3.7: Average accuracy for each epoch of all the networks trained on the note
recognition dataset.

but they should be evaluated on whether they classify a complete signal since the dataset is
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originally composed of 4 second signals. In the case of this work, multiple windows are derived
from a single signal that belongs to a certain class. Therefore, the windows are also considered
as belonging to the same class of the signal that they are derived from. However, the models
may give a different classification for each window, so to determine the class of a signal given
the classification of its windows, we use the statistical mode of the different classifications.
By performing this postprocessing step, we end up with the average accuracy per signal for
each network, as shown in Table 3.5. We notice that the per-signal accuracies are better
than the per-window accuracies for all networks, and that the 1IDPNN is more accurate than
the 1DPNN-equivalent network by 0.22% and is only 0.02% better at classifying the signals
than the performance-equivalent network which has the best per-window accuracy statistics.
Nevertheless, the performance-equivalent network is 1.1 times slower than the 1IDPNN and
uses 1.05 times more parameters as shown in Table 3.6 in which the number of parameters and
the execution time of each network are reported. Therefore, the IDPNN is able to extract more
information from the data in less space and less time for the note recognition problem.

TABLE 3.5: Accuracy per signal for each network for note recognition over 10 folds.

Network
Statistic (%) 1IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Average accuracy 88.81 88.47 88.59 88.79

TABLE 3.6: Average spatio-temporal complexities for each network for note recognition.

Network
Complexity 1IDPNN  1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 71,344 65,728 71,490 75,116
Temporal(us) 78 73 76 86

3.4.2.2 Spoken Digit Recognition

The dataset used for this problem is the Free Spoken Digits Dataset [21] which contains 2000
audio signals of different duration sampled at 8kHz consisting of people uttering digits from 0
to 9 which will represent the classes of the signals. In this work, 1800 signals are considered for
training and 200 signals are considered for testing the networks. A closer look at the dataset
shows that 83% of the signals last less than 500ms and that the voiced sections of the remaining
27% are contained within the first 500ms, leaving the rest of the durations filled with noise
and/or silence. Since the dataset has signals of different durations, we use a sliding window
with a window size of w = 4000 (500ms) and an overlap of 0.9 to ensure that one window contains
enough information to classify the signal. This process yields a training set of 8333 signals and a
test set of 796 signals. The sliding window only operates on the signals whose durations exceed
500ms while the signals that last less than 500ms are padded with zeros. 10-fold cross validation
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is also used to evaluate the four networks. Table 3.7 shows the hyperparameters of each layer

TABLE 3.7: Networks’ topologies for spoken digit recognition.

1DPNN 1DPNN-equivalent network Performance-equivalent
network
PNNLayer(8, 81, 1, tanh) Conv1D(8, 81, tanh) Conv1D(16, 81, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 25, 2,tanh) Conv1D(8, 25, tanh) Conv1D(16, 25, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 9, 2, tanh) ConvlD(8, 9, tanh) Conv1D(16, 9, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 9, 3, tanh) Conv1D(24, 9, tanh) Conv1D(16, 9, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 3, 6, tanh) Conv1D(24, 3, tanh) Conv1D(8, 3, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
Flatten Conv1D(8, 1, tanh) Flatten
MLP (64, ReLU) Flatten MLP(64, ReLU)
MLP (48, ReLU) MLP (64, ReLU) MLP(48, ReLU)
MLP(10, softmax) MLP (48, ReLU) MLP(10, softmax)

- MLP(10, softmax) -

of the IDPNN, 1DPNN-equivalent network and the performance-equivalent network.

The 1DPNN is trained on the windows extracted from the signals with the activation functions
presented in Section 3.4 and the 10-fold statistics are reported in Table 3.8 below. The results
are highly similar to the ones obtained on the note recognition problem where the tangent
hyperbolic activation function outperforms the other activation functions and the ReLLU and
Swish functions exhibit unstable behavior. The 10-fold accuracy statistics of each network is

TABLE 3.8: Accuracy per window for each activation function for spoken digit recognition
over 10 folds.

Activation function

Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 93.59 93.13 91.06 92.98
Maximum accuracy 93.97 93.82 92.51 93.6

Average accuracy 93.71 93.56 91.24 93.15

shown in Table 3.9 where the average accuracy of the 1IDPNN is almost 1% better than the
1DPNN-equivalent network. Figure 3.8 shows that the average accuracies of all the networks
start to stagnate from epoch 50 and that their evolution becomes stochastic in nature. Since
the classification is performed window-wise, the average accuracy per signal can be estimated
with the same principle used in the note recognition problem. Table 3.10 shows that the average
accuracy per signal of the IDPNN surpasses that of the IDPNN-equivalent network by almost
3% and that of the performance-equivalent by only 0.06% which is to be expected. However,
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Table 3.11 shows that the performance-equivalent network has 1.11 times more parameters
than the IDPNN and runs 1.08 times slower than the 1DPNN. Therefore, the 1DPNN can
extract more information in less space and less time for the digit recognition problem.

TABLE 3.9: Accuracy per window for each network for spoken digit recognition over 10

folds.
Network
Statistic (%) IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum accuracy 93.59 90.98 92.64 93.63
Maximum accuracy 93.97 91.27 92.91 94.07
Average accuracy 93.71 91.2 92.83 93.96
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FIGURE 3.8: Average accuracy for each epoch of all the networks trained on the spoken
digit recognition dataset.

TABLE 3.10: Accuracy per signal for each network for spoken digit recognition over 10

folds.
Network
Statistic (%) 1IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Average accuracy 94.23 91.31 93.11 94.17

TABLE 3.11: Average spatio-temporal complexities for each network for spoken digit

recognition.
Network
Complexity 1IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 68,746 67,210 69,274 76,338

Temporal(us) 97 93 96 105
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3.4.3 Regression Problem: Audio Signal Denoising

Both 1DPNN and 1IDCNN models take as input a signal and output a signal that usually has a
lower temporal dimension due to border effects. However, in this regression problem, we need
the output signal to have the same temporal dimension as the input signal. Therefore, we use
zero-padding to avoid border effects. 4 different metrics are used to evaluate the performances
of the models for this problem:

1. The Signal-to-Noise Ratio (SNR) measured in decibel (dB) defined as such:

Hn2

SNR = 10logy, (“52 ) ,

where pu,2 is the mean square of the signal without noise, and p,2 is the mean square of
the noise.

2. The Mean Squared Error (MSE) which is equivalent to fi,2.

3. The segmental SNR (SNRseg) [61] which is the average of the SNR values calculated on
short segments of the signal.

4. The perceptual evaluation of speech quality (PESQ) score [62] which is an objective evalu-
ation of subjective speech quality that takes into account a large range of signal distortions.
The score ranges from -0.5 for very bad speech quality, to 4.5 for excellent speech quality.

The dataset used for this problem is the MUSDBI18 [22] dataset containing 150 high quality
full length stereo musical tracks (10 hours of recordings) with their isolated drums, bass, and
vocal stems sampled at 44.1kHz. It is mainly used for source separation, but can also be used
for instrument tracking or for noise reduction. The aim of this problem is to restore voice
recordings that are drowned in AWGN making their individual SNR around 0dB. However,
since the dataset is huge and the experiments are restricted by technical limitations, we take
a small subset of the training set and the test set, downsample the voice tracks to 16kHz, and
extract windows of 100ms to obtain 40,000 short clips (80% for training, 20% for testing).

All networks are then trained to estimate a clean window from a noisy one. The trained
networks are then used as building blocks for an end-to-end denoising system which takes any
noisy signal and outputs a cleaner signal of the same length. Figure 3.9 shows how an input
signal x is processed into an output signal y where the "Model" block represents a denoising
model, which in this case corresponds to any of the trained networks. The "Sliding window"
block takes a signal x and outputs n windows where each is fed to the model that processes it
into a denoised window. The n denoised windows are then divided by the Hamming window
function and reconstructed into a signal y. The end-to-end system is then evaluated for each

trained network using the 4 metrics described above on 700 singing clips of 10 seconds that
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FIGURE 3.9: Block diagram of the end-to-end denoising system.

are drowned in AWGN. However, to estimate the generalization capability of the networks, the
singing clips are corrupted into -5dB clips, 0dB clips, 5dB clips, 10dB clips and 15dB clips.
Therefore 20 measures are reported per network.

The topologies used to solve the problem are detailed in Table 3.12 below. The 1DPNN is
trained on the windows extracted from the signals with the activation functions presented in
Section 3.4. However, since ReLLU and Swish are unbounded and the output of the 1IDPNN
needs to have the same range as its input, we use the sigmoid activation function in the last
layer when using ReLU and Swish in the inner layers. The 10-fold SNR statistics for each
1DPNN reported in Table 3.13 below show that although the tangent hyperbolic function has
the highest minimum accuracy and average accuracy overall, the softsign achieved the highest
maximum accuracy. Moreover, it shows that the Swish function is far more effective than the
ReLU and that it almost performs as well as the tangent hyperbolic and the softsign. However,
contrary to the classification experiments, the ReLU and the Swish activation functions did
not exhibit any form of instability. This may be due to the use of the sigmoid function in
the last layer which highly restricts the values of the gradients. The statistics of the SNR per

TABLE 3.12: Networks’ topologies for audio signal denoising.

1DPNN 1DPNN-equivalent network Performance-equivalent
network
PNNLayer(16, 21, 5, tanh) Conv1D(77, 21, tanh) Conv1D(128, 21, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(16, 7, 5, tanh) Conv1D(17, 7, tanh) Conv1D(64, 7, tanh)
UpSampling1D(2) UpSampling1D(2) UpSampling1D(2)
PNNLayer(1, 11, 5, tanh) ConvlD(5, 11, tanh) Conv1D(32, 11, tanh)
- Conv1D(1, 1, tanh) ConvlD(1, 1, tanh)

window gathered using 10-fold cross validation are reported in Table 3.14 where we notice that
the 1IDPNN’s average SNR is 0.12dB better than the 1IDPNN-equivalent and very close to the
performance-equivalent 1IDCNN, which is to be expected. However, Figure 3.10 representing
the evolution of the 10-fold average SNR per window over the epochs shows that the IDPNN
has a highly faster convergence than the other networks. Table 3.15 shows the performance
evaluation of the end-to-end system built on top of the best of each network based on the 4
performance evaluation metrics described above and for different noise levels ranging from -5dB

to 15dB. The corrupted signals are also evaluated with respect to the original ones in the "No
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TABLE 3.13: SNR per window for each activation function for audio signal denoising
over 10 folds.

Activation function

Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 9.25 9.18 8.3 9.11
Maximum accuracy 9.34 9.38 8.71 9.27
Average accuracy 9.28 9.25 8.44 9.2
TABLE 3.14: SNR statistics per window for each network for audio signal denoising over
10 folds.
Network
Statistic (dB) IDPNN  1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum SNR  9.25 8.63 9.11 9.2
Maximum SNR 9.34 8.94 9.23 9.35
Average SNR 9.28 8.88 9.16 9.3
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FI1GURE 3.10: Average SNR in dB per window for each epoch of all the networks trained
on audio signal denoising.

network" column. The overall results show that, for all the networks, the SNRseg is always
much higher than the SNR which may be due to the fact that the networks perform better
on voiced segments of the signal than on non-voiced segments (silence segments) of the signal.
However, the SNRseg of the corrupted signals is always very inferior to the SNR which can be
explained by the fact that the corruption of speech quality and intelligibility is far more severe
than the corruption of the overall signal when using AWGN. The results show that for all noise
levels except -5dB, the 1IDPNN provides better results than all the other networks and shows
a decent level of noise suppression notably for 0dB noisy signals with a 9.44dB segmental SNR
representing a 24dB improvement compared to the corrupted signals and a 2.255 PESQ score
which means that the restored speech is fairly intelligible.

Figure 3.11 shows how the end-to-end system built on top of every best trained network improves
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TABLE 3.15: Performance evaluation of the end-to-end system with respect to the best
trained networks, 5 different levels of noise and 4 performance evaluation metrics. The
"No network" column shows the corrupted signals evaluated with respect to the original

ones.
Network
SNR  Metric No network 1DPNN  1DCNN same topology 1DPNN-equivalent Performance-equivalent
MSE 0.0283 0.0039 0.0045 0.0041 0.0037
sqp SNR(dB) - -4.99 1.82 0.61 1.12 1.37
SNRseg (dB) -19.56 6.07 5.67 5.92 6.13
PESQ score  1.15 1.858 1.843 1.866 1.834
MSE 0.0136 0.0015 0.0017 0.0016 0.0015
0dB SNR (dB) 5.23E-5 2.34 1.25 1.33 1.47
SNRseg (dB) -14.56 9.44 8.87 9.31 9.27
PESQ score 1.24 2.255 2.19 2.253 2.23
MSE 0.0089 0.0007  0.0009 0.0008 0.0008
5dB SNR (dB) 4.99 4.81 3.51 2.33 1.23
SNRseg (dB) -9.56 11.87 10.85 11.76 11.49
PESQ score  1.42 2.74 2.65 2.73 2.73
MSE 0.0074 0.0004  0.0006 0.0005 0.0005
10dB SNR (dB) 9.99 6.31 4.69 3.75 2.36
SNRseg (dB) -4.56 13.34  11.84 13.22 12.81
PESQ score 1.69 3.26 3.14 3.24 3.23
MSE 0.007 0.00039 0.0005 0.0004 0.0004
15qp SNR (dB) 14.99 6.99 5.14 443 2.91
SNRseg (dB) 0.43 14.07 1225 13.91 13.44
PESQ score  2.06 3.68 3.58 3.67 3.66

the 4 performance metrics with respect to the corrupted signal for different levels of noise.
The improvement of a metric is calculated by determining the difference between the metric
estimated from a given network’s output and the metric estimated from the corrupted signals
(the opposite is calculated for the MSE) such that an improvement in a metric is positive for
a given network when that network enhances the corrupted signal with respect to that same
metric. The main observation that can be drawn is that the PESQ score is the only metric
that the networks improve better for higher SNR values whereas the improvements of the other
metrics decrease as the SNR of the corrupted signals increase (as the noise becomes less severe).
Furthermore, the only metric that all the networks fail to improve is the SNR for corrupted
signals with an SNR of 5dB or higher despite an improvement in all other metrics. This may be
due to the fact that the networks are better at enhancing the quality of the speech locally which
explains the PESQ and SNRseg improvements, and that this local enhancement compensates
the degradation that occurs in the non-voiced segments which leads to an improvement in
the signal reconstruction and thus, the MSE. A closer look at the results also shows that the
1DPNN-equivalent network actually performs better than the performance-equivalent network
on all noise levels greater or equal to 5dB. This may be due to the fact that the performance-
equivalent network has more parameters which enables it to focus more on severe noise than on

medium /low noise. Overall, the IDPNN shows a better ability to generalize on different noise
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levels. Moreover, the performance-equivalent network has 7.18 times more parameters than
the IDPNN and runs 1.19 times slower than the 1IDPNN as shown in Table 3.16 below. This
means that the IDPNN is more efficient than the 1IDCNN in audio signal denoising and can

encapsulate more relevant information in less space and less time.
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FIGURE 3.11: Performance metric improvements of the end-to-end system built on top
of every best trained network with respect to the corrupted signals for 5 different levels
of noise (values between two noise levels are linearly interpolated).
TABLE 3.16: Average spatio-temporal complexities for each network for audio signal
denoising.
Network
Complexity 1IDPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 11,553 2,337 11,820 83,000
Temporal(us) 104 76 81 124

3.5 Chapter Summary

In this chapter, we have formally introduced a novel 1-Dimensional Polynomial Neural Network

(IDPNN) model that induces a high degree of non-linearity starting from the initial layer in
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an effort to produce compact topologies in the context of audio signal applications. Our ex-
periments demonstrate that it has the potential to produce more accurate feature extraction
and better regression than the conventional 1IDCNN with less spatial and computational com-
plexities. Furthermore, our model also shows faster convergence in the audio signal denoising
problem and shows a significant gap in the performance compared to the IDCNN which needs
to use more space and time to produce the same results. We have also showed that the IDPNN
model converges with no instability when we use activation functions bounded between -1 and

1 (like tanh) or when all the degrees are set to 1 because it becomes equivalent to a IDCNN.
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Chapter 4

Polynomial Degree Reduction and
NDPNN Generalization

4.1 Introduction

Polynomials expressed in the canonical basis are widely used in different scientific fields such
as machine learning, statistics and computer science. They can be used in different regression
and classification models in machine learning [63] [64], they can be used as the main building
block for some statistical models [65], and they can also be used to compute hyperbolic and
circular functions [66]. Although modern technology is able to rapidly exploit and manipulate
polynomials, it is undeniable that saving computational and spatial resources is paramount for
hardware and software optimization. Furthermore, in many cases, high degree polynomials are
used on inputs (data) that are bounded in a certain interval. For instance, audio signal values
are, in most of the cases, comprised between —1 and 1, and grayscale images contain values that
are comprised between 0 and 255 or 0 and 1. Moreover, some machine learning applications
require polynomial-based models such as the IDPNN model that we introduced in Chapter 3 or
the polynomial activation neural network model [67] that use high degree polynomials in every
neuron. Therefore, reducing the degree of a polynomial to obtain nearly the same results on
a particular interval with increased spatial and computational efficiency can be vital for some
new machine learning models to thrive.

Polynomial reduction has been extensively explored for various norms to improve computer
aided design (CAD) [68] [69] [70], but the polynomials that are reduced are mostly expressed
using Bernstein-Bézier coefficients because they are suitable to model graphical curves [71].
However, the polynomials that are used in many machine learning models are usually expressed
using coefficients in the canonical basis, or canonical coefficients. In fact, they can either be
used as kernels [13][14][15][16][64][72] or as core building blocks [63][67][73][74] which is the case
of the IDPNN. We therefore develop a direct formula to produce the canonical coefficients of a

polynomial of low degree that approximates a polynomial of high degree which is expressed in
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the canonical basis. The reduced polynomial minimizes the £?-norm on any symmetric interval
of the form [—[,1] where [ € R%. We also demonstrate the theoretical proof that using the
formula is more computationally efficient than using a classical approach consisting of matrix
multiplications and we empirically show that this formula is more stable than the classical
approach. Following that, we generalize the IDPNN to NDPNN and we use the polynomial
degree reduction formula to design an NDPNN layer-wise degree reduction heuristic algorithm
that enables the compression of a pre-trained NDPNN with little to no compromise to its
performance on the dataset it was trained on.

The outline of this chapter is as follows. In Section 4.2, we define the problem and we provide
a method to determine its solution. In Section 4.3, we define an orthonormal basis that is
used as an intermediary for computing the canonical coefficients. In Section 4.4, we detail the
steps that lead to determining the canonical coefficients of the reduced polynomial. In Section
4.5, we analyze the computational complexities of the use of the direct formula and the use of
the classical approach. We also provide two examples of how to use the results developed in
this chapter. Finally, Section 4.6 generalizes the 1IDPNN to NDPNN and details the NDPNN
layer-wise degree reduction heuristic algorithm.

4.2 Problem Statement

In this section, we define the problem and we provide a general way to determine the solution.
Let R[X] be the polynomial algebra in one indeterminate X over R. Let P,Q € R[X] such
that deg(Q) < deg(P). Let N = deg(P) and M = deg(Q). Let (ag,...,ay) € R¥*! be the
coefficients of P in the canonical basis (1, X, ..., X™) and (by, ..., bar) € RM*! be the coefficients
of  in the canonical basis. Let [ € R}. We want to estimate the polynomial () that best
approximates P as such:

min )21l/lz (Q(z) — P(x))*dz = min Jp(bo, ..., bar).

(bo,..-,bas (bo,-.,bar)

Determining the coefficients (by, ..., bys) can be achieved by solving the linear equation V.Jp = 0.
However, solving the equation for these coefficients may prove to be difficult. Therefore, as an
intermediate step, we suppose that there exists an orthonormal basis (eq, ..., ex;) such that

M
3(507 J/BM) € RM+17Q = Z ﬁnen,la
n=0

and

1
Vm,n € [0, N] /lemJ(m‘)en,l(m)dm = O,

721
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1
5 /4(Q) -

P(z))*dz such that @ is expressed in the orthonormal basis. Solving the equation V.J} = 0 is

where ¢ is the Kronecker delta. The objective is then to minimize Jp (5o, ..., Ba) =

equivalent to solving the following linear system:

a.JL
" OBm

(Bos s Bu) =0 <= QZ/ (2 (Zﬁnenl P(x )> dr =0
<~ ZBnQZ/ eml enl dfl:_ 21/ eml d.ﬁl}

¢¢%=%LHWWMM=§%ﬂL$%MW

The solution of the system is then

Qo

5o

. — TN
Bu

an

where TN s a (M + 1) x (N + 1) matrix such that

ryTm,n

V(m,n) € [0, M] x [0, N], TR — zz/ e (z

TN is the orthonormal projection matrix of Ry[X] on Ry[X] from the canonical basis to
the orthonormal basis. In order to determine the coefficients (by, ..., bys) in the canonical basis,

we use the transition matrix from the orthogonal basis to the canonical basis which happens to
-1
be (T[M’M’l]> as such:

Qo Qo
Bo bo

(T[M,M,l]) -1 S [ R (T[M,M,l]> -1 TIMN] _ Mg
B bar :

1
The objective is to determine (by, ..., by ) by finding the elements of VIM-NI — (T[M’M’”) TN

-1
without the need to calculate the matrix product (T[M M ’l]) TN,
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4.3 Determining the Orthonormal Projection of Ry[X] on Ry/[X] in

the Orthonormal Basis

In this section, we will define all the necessary notions that are needed to perform the orthonor-
mal projection of Ry[X] on Ry/[X]. The notion of orthonormality is defined with respect to a
scalar product. Thus, we first need to determine a suitable scalar product for the projection.

We first define an intermediate scalar product that will serve as a basis for the remaining.

Proposition 4.3.1. Let (-,-) be defined as such:
(,): RIX] xR[X] = R
1
(A, B) s / A(2)B(x)dz.
-1
(-,+) is a scalar product on R[X].
We now define the scalar product that is relevant to our problem.
Proposition 4.3.2. Let | € R and (-,-); be defined as such:
(0 RIX]xRX] =R
1
(A, B) = = / A(z)B(x)da.
—l

() is a scalar product on R[X].

Proof. The proof can be derived from the proof of Proposition 4.3.1. [ |

The scalar product defined in Proposition 4.3.1 is a well-known one that is related to a set of
orthogonal polynomials called the Legendre polynomials.

Definition 4.3.1. The set of polynomials (L, )men called Legendre polynomials is defined using
Rodrigues formula [75] as such:

Vim € N,Vo € R, L(z) = - [(22 = 1)"]..

- 2mm!| dx™

Lemma 4.3.1. Legendre polynomials are orthogonal for (-, -).
Using Legendre polynomials, we want to define an orthonormal basis of R[X] for (-,-);, where

leRy.

X
Theorem 4.3.1. Let m € N, € R and e,y = v2m + 1L, (l) The set of polynomials

(€m.1)men @s an orthonormal basis of R[X] for (-, ).
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Proof. Let | € RY.. To prove that the set (e, ;)men is an orthonormal basis of R[X] for (-, -);,
we first need to prove that it is orthonormal for (-,-);, then we need to prove that it is a basis
of R,,[X], Vm € N.

Let m,n € N such that m # n. We have

\/2m+1\/2n+1/lL (:v T

1
(em, iy eni)t = 2 /_l emi(x)en (x)dr = 5

We can use the substitution ¢ = % since x: — % is a diffeomorphism from [—/,[] to [—1,1].
Therefore, we obtain

2 12 1 /1 2 1v2 1 /1
(emis enth = L ””2[“ "L g = RN e
—1 -1
2 12 1
Vv m+2\/ n+ (Lo L) = 0.

This proves that (€,,;)men is an orthogonal set. Let us show that it is orthonormal. To do so,

we need to prove that (e, e, ) = 1. We have

_2m+1 B 2m+1 L gm 9 9 dam 9 9
entetoh = 25 = 2 [ A (= ] [ - 1]
B 2m +1
- 22m+1(m!)2 m,m;
where
o Ldm 2 2 d™ 2 2

By iteratively using integration by parts, we obtain

1 1

(2% — 1)"dz = (—1)™(2m)! / (& — 1)"(z + 1)™dz

-1

(~1)" Lo = (~1)"(2m)! |
(=1)™(2m)! im0,

[m,m

where

o = /1 (z = 1)™(z + 1)"dz.

-1

By using integration by parts, we have

1
(z +1)m*t m [t . )
o [(gj ) m+ 1 ;. m+1 71(36 et v m+17™!
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By iterating, we find that

Lm—%—nmmmamm—%—nm@mz/%x+w%wx—bdwﬁmy[@+1WHW

(2m)! (2m)! J—1 2m)! | 2m+1
— (_1)m22m+1 (m')2
(2m + 1)1
(4.2)
Finally, we obtain
om + 1 (2m+ 1)
ot ot = gt e = U gy e
m (2m+1)! o (m!)?
= (" Samriga (L) 2ot |
2 (m!) (2m +1)!

As a result, (€,1)men is an orthonormal set for (-, -);. In particular, Vm € N, (egy, ..., €m,) is an
orthonormal set of R,,,[X] for (-,-); and its size is m+1 = dim(R,,[X]). Since (e, ..., €my) is an
orthonormal set, it is linearly independent. Hence, it is a basis of R,,[X]. Finally, we conclude
that the set of polynomials (e,,;)men is an orthonormal basis of R[X] for (-,-),. |

After determining the orthonormal basis, we want to determine how any polynomial expressed
in the canonical basis can be expressed in the orthonormal basis.

Lemma 4.3.2. Let [ € R} and m € N. The degrees of all the monomials of ey, have the same

parity as m.

Proof. Letl € R, m € N. According to the binomial theorem, (X*—1)" = f (:;L)XQ”(—l)m_”.
n=0

d
Thus, every monomial of (X?—1)™ has an even degree. Therefore, given that L,, o Txm (X2 —1)m],
the degrees of every monomial of L,, will either be even or odd, depending on the parity of m,

X
since deg(L,,) = m. Given that e,,; = v2m + 1L,, (l)’ the degrees of all the monomials of

em, also have the same parity as m. |

Theorem 4.3.2. Let | € RY.

(X2 eomit11)i = (X" egmi) =0
2n)l(m +n+1)!
\V/frn7 n e N7 <X2n7 €2m,l>l = \/m'22m+ll2n ( ) ( ) 'lN\[[07m[[(n) ’

(n—m)!(2(m+n+1))

2n+1Dlm+n+1)!
X2n+1 m — 4 3.22m+ll2n+1 (
X amr)e = Vim + (n—m)(2(m+n+1)+1

I I fo,mp (1)
(4.3)
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where Iy\fom[ 5 the indicator function on N\ [0, m[.

Proof. Let | € R and m,n € N. According to Lemma 4.3.2, we know that the degrees of every
monomial of eg, 11, is odd, since 2m + 1 is odd. We also know that

n-r !
Vi € [0,m], (X", X)), = / Pty = L / l 2D+ g — P —0.
Tl 21 J- 2(n+i+1)]_,

Accordingly, since the degrees of every monomial of ey, 11, are odd, we obtain (X n €amt1)l =
0. The same can be deduced for (X*"*! ey, ).

Let us determine (X?" ey,,,);. We have

\/4m—|—
<X2 62mll 2l/ z? €2ml / 2nL2m< )dl’

We can use the substitution ¢ = % since z: % is a diffeomorphism from [—[,[] to [—1,1]. As

a result, we obtain

Vi Im+i., [l

(X2 eom i)t = m+ / (1) Loy, (1) 1dt = Y2 Lpon / 12 Lo (1) dt
-1
\/4
_ 7”; LTRSS Y
We have
1 L pm 1
2n o 2n 2 2m _

(X Lam) = 22m(2m)!/1x o (@~ D™ do = Do (g1 2 (44)
where

d2m o
KQan—/ (L’ —1) :|dl’

ZEQm

By using integration by parts, we obtain

d2m 1

{(l‘Q - 1)27”} dx

dIQm— 1 1 dIQm 1

m— 1
_ 2n d2 ' 2 1\2m o ! 2n—1
Kopom = |2 [(@” = 1)™] om [z
-1

= _2nK2n—1,2m—1-

If n < m, we can iterate the previous result 2n times to find that

1 d2(m—n)

Konom = (—=1)2(20) Ko sy = (20)! /

1 Ci:L-Q(mfn

[(m2 - 1)27”] dxr = 0.
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Hence, (X2 e9,:); = 0 when n < m. If n > m, we can iterate the integration by part of Koy, om
k) g 9

2m times to obtain

2n)! (2n)! 1 _ 2m
Knm:_lzm ( anm _ / 2(n—m) 2_1 d
anam = (=™ G0 i eeeme = g = LT (=" -1)"da
(4.5)
B (2n)!
where
1 om 1 2m
Hn—m - :/ 2(n—m) 2 1 d :/ 2(n—m)—1 2 1 dr.
2 ¥ (x ) z=[ @ x (:1: ) x
By using integration by parts, we obtain
) — 2m+171
Hoo,o— g2n=m)=1 (2 — 1) B 2(n—m)—1 /1 2(n-m-1) ($2 B 1)2m+1 i
’ 2(2m + 1) . 22m+1) Ja
2(n—m) — lH (—1)m (2(n —m))! (2m)!
= Q0 n—m—1.2m+1 — (7 n—m n—m Omtn
2(2m—|—(1)( ))” +(1 | 2n=m (n, — m)l 2= (m 4 ) " (4.6)
2(n —m))! 2m)! 1
— (=1 ™ / 2_1m+nd
O S — )i oyt S DT
nem_ (2(n—m))!  (2m)!
= <_1) 2 m+n,0-
22(n=m) (. — m)! (m + n)!
Using Eqs.(4.2), (4.6), (4.5), and (4.4), we find that
(X% g )y = VI H Ly 2L (20— m))!2m)l (=122 (o )
el 2 227 (2m)!(2(n — m))1220=m) (n — m)!(m + n)!((2(m + n) + 1)!
— 4m+122m+1l2n ( ) (m+n+1)
(n—m)!(2(m +n+ 1))
Since (X?", €9 )1 = 0 when n < m, we finally conclude that
2n)!(m +n+1)!
X2n " = /4 1.22m+ll2n ( 1 m )
X eaniy = viAm ¥ = )@+ ) e
The same steps can be followed to determine (X2 ey, 11 ). [ |

Using Theorem 4.3.2, we can fully determine TN defined in Eq. (4.1) such that V(m,n) €
[0, M] x [0, N, TN = (X", emahi.

r T m,n



Chapter 4. Polynomial Degree Reduction and NDPNN Generalization

592

4.4 Determining the Orthonormal Projection of Ry[X] on Ry/[X] in

the Canonical Basis

In this section, we use the theorems proposed in Section 4.3 to solve the problem defined in

Section 4.2. In order to determine the canonical basis coefficients, we need to determine the

transition matrix (T[Mval] -

1
) from the orthonormal basis to the canonical basis as defined in

Eq. (4.1). To do so, we need to express the set of orthonormal polynomials (ey,),,.y in the

canonical basis.

Theorem 4.4.1. Let | € RY. Vm € N,e,,; = g Emmni X" where
n=0

€2m,2n+1,1 = €m+1,2n,l = 0
_VAm+1 (2(m+n))!
Vi € N, g emant = U S i — iz 0 ()
o VAm + 3 (2(m+n) +1)!
Cmitznin = (=D (m +n)l(m —n)!(2n + 1) Mo ()

Proof. Let | € R, m € N. We have

Vi (1) = e () )

0
- ;2ﬂnz<;n1§2'm dc)l;jm [<<X>2 - 1) ] '

l

According to the binomial theorem, we have
X 2 2m 2m om X 2n
_ -1 — il -1 2m—n‘
(( l ) ) nz::o ( n > ( l ) =1

Consequently, we obtain

g ()

22m(2m)! n ) (2(n —m))l2»

€om,l =

n=m

Vam +1 2% R | (2n)! o
o 2 (=1) [2(n=m) n!(2m—n)!((2(n—m))!X .

n=m

By using the index substitution n <— n — m, we have

€om, = i(_mm—n\/m (2(m + n))|

X2n = Z €2m,2n,lX2n-
22m2m (m 4+ n)l(m —n)!(2n)! =

n=0

(4.7)



Chapter 4. Polynomial Degree Reduction and NDPNN Generalization 53

Therefore, by identification, we have €g, 2,41, = 0 and

0 Jifn>m

€2m,2n,1 = o VAM + 1 (2(m +n))!

22m2m - (m + n)l(m —n)!(2n)!

, otherwise

Finally, we obtain

e VAm + 1 (2(m + n))!

mont = (—1 1 n .
€mant = (1) 22mp2m (m 4+ n)l(m —n)!(2n)! mponl(m)

The same steps can be followed for €9, 119, and €41 2n41.1- |

We can now use Theorem 4.4.1 to determine (T[M’M’”) ' such that V(m,n) € [0, M]?, (T[MM’”) N

m,n

-1
€n,m. Having determined TN and (T[M M ’”) , the canonical coefficients can be determined

-1
by calculating VIM:NA = (T[MvM’l]) TBLNG - We can notice that VIMMI = [, where I, is
the identity matrix. In that case, there is only the need to determine the elements of VNl
pM N VIMNG ot line

whose columns are strictly greater than M. We denote by an element of

m and column n, ¥(m,n) € [0, M] x [0, N].

M
Theorem 4.4.2. Let | € R} and M,N € N such that M < N. Let p = {QJ P =

M—-1 N N -1
{ J,q: {J and ¢ = {2J We have

2 2
W(m,n) € [0,p] x [p1 + 1, @], vhia = 0,
¥(m,n) € [0,p1] x [p+ 1, 4], 03130 = 0,
_1)p—ml2(n—m)(2 n—m—1 pt+n 1

V(m,n) € [0,p] x [p+1, v[%]\;l] ( r )
( ) €0,p] x[p ql, Va2 on=m(n, —m)!(p — m)( r:l;[p T:pl;lnﬂ 2 + 1
and
V(m,n) € [[07]71]] X [[pl + 1 Q1]]

[MNZ] ( )p mZQn m (2n+1 n—m-—1 p+n+1 1

Vam4+1,2n41 = onmim I~ 1II :

2n=m(n —m)l(p —m)!(2m + 1)! ey repimy2 27+ 1

M M-—1 N
Proof. Let [ € R} and M, N € N such that M < N. Let p = {J P = { J,q: {J

2 2
N — MNG_

1
and ¢ = {QJ We will first prove that V(m,n) € [0,p] % [p1 + 1, q1], vor0ni1 =
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Let (m,n) € [0,p] X [p1 + 1,¢:1]. We have

M
[M,N,]]  __ 2n+1
Uom,2n+1 = Z €k,2m,l <X 7€k,l>l-
k=0

According to Theorem 4.3.2 and Theorem 4.4.1, (X" ¢, ;); = 0 when k is even and €y 5, = 0
when k is odd. However, k£ can not be even and odd at the same time, thus, one of both terms

in the multiplication will necessarily be nil. Thus, v% ‘;\LL = 0. The same reasoning can be

M,N,l
used for vgm T, ]2n

We now want to determine the value of vi” Q;”,V(m,n) € [0,p] x [p+1,q]. Let (m,n) €

[0,p] x [p+1,q]. We have

MNZ]
Vam,2n ZEk 2ml ,ek,z>l-

According to Theorem 4.3.2 and Theorem 4.4.1, (X", ex,;); = 0 when k is odd and €y 2,,; = 0
when k is odd. Hence we obtain

[M,N,I]
2m 2n Z €2k,2m l er,l)l-

According to Theorem 4.4.1, €9y, 2,1 = 0 when k£ < m. As a result, we have

[M,N)]]
2m 2n Z €2k,2m, l €2k7l>l-

[M,N,]]

2m,2n

[M,N,]]

In order to determine v we can first determine Vg(p—m),2n 85 such:

p
U% N,,,i]) on = D €an2(pem) (X" €2)
k=p—m
B zp: (—1)k+m=p2(4f + 1)[2+m=p)  (27)! (k+n+1) 2(k+p—m))!
_k:p_m (k+m—p)l(n—k)! Cp-—m)2E+n+D)) (k+p—m)!
(4.8)
We have
2(k+p—m) k+p—m k+p—m—1 k+p—m—1

Ck+p-m)= T[] r= [[ 2r [] @r+1)=2""k+p—m) J[ (2r+1).

r=1 r=1 r=0 r=0
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Thus,
2k + p—m ' . k+p—m—1
( ((k +p— m))') =20 1:[0 (2r+1). (4.9)

The same steps can be followed to show that

(k+n+1! 1 ’fﬁ" 1 (4.10)
2k +n+ 1)) 2ktntl 2L 9p 417 '
From Egs. (4.9) and (4.10), we can derive the following expression:

(k+n+1)! 2k+p-—m)) 1 ’fﬁl 1 (4.11)
2k+n+1) (k+p—m)! artmeptl e m 2r+ 1

By injecting Eq. (4.11) in Eq. (4.8), and by factorizing the terms of the summation that do
not depend on k, we obtain

g LG p>(2n) i’: yopem__ Gk +1) kﬁn (4.12)
2(p—m),2n 2n+m=p(2(p — k - (k4+m—p)l(n—k)! =k pm or+1° )

Since Eq. (4.12) consists in the summation of different fractions, we express the fractions with

respect to the same common denominator as such:

l2(n+m—p) 2m)! p+n 1
v;fymgz — (2n) I =S (4.13)
mo2rtm=p(2(p — m))(n — p + m)Im! r3(pem) 2r4+1 7"
where
p n—p+m m k+p—m—1 p+n
Smnp= > (=1 PUk+1) I » [I = II @+1) [ 2r+1).
k=p—m n—k+1 k+m—p+1 2(p—m) k+n+1

The objective is now to prove that

2p—m n—p+m—1
Smmp =" ] @r+1) ]
2(p—m) n—p

To do so, we first need to rearrange the terms of S, ,,,. We use the index substitution k <— p—£k
to obtain

m n—p+m m 2p—m—k—1 p+n

Smmp = (D" *ap-k)+1) [ » II » I @+1) I @r+1).

k=0 r=n—p+k+1 r=m+1-k r=2(p—m) r=p+n—k+1
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We then incorporate the common terms of each boundary of each product into each product

index to obtain

m m m —k—m—1
Smnp = (D" Up—k)+1) [[ r+n—-p) J[r ] Up+2r+1)
k=0 r=k+1 r=—k+m+lr=—2m

X 19[ 2(r+p+n)+1).
r=—k+1

Let S;,(X,Y) € R[X, Y] be a polynomial in 2 indeterminates X and Y over R defined as such:

m m m —k—m-—1
Sm= 2 (=D)""AY —k)+1) I[ ¢+ X =Y) I[r [ @y +2r+1)
k=0 r=k+1 r=—k+m+1r=—2m

X 19[ Qr+Y+X)+1).

This makes Sy, = Sm(n,p). Since our objective is to show that

2p—m n—p+m—1 m me1
Smap = (D" I 2r+1) JI r=CED"[[A@-m)+2r+1) [T (r +n—p),
2(p—m) n—p r=0 r—0

we can show that the polynomial S,,(n, X) in one indeterminate X can be factorized as such:

Sm(n, X)=(-1)" f[O(ZL(X—m) +2r + 1)ni:[0(r+n—X).

1
Therefore, the objective is to show that Vt € [0, m], m — Z(QH_ 1) is a root of S, (n, X) and that
1
Vt € [0,m—1],t+n is also a root of S,,,(n, X). We begin by showing that m — 1(275—1- 1) is a root

1
of S;,(n, X),Vt € [0,m]. Let t € [0,m]. We want to show that S,, (n,m - Z(2t+ 1)) = 0.
We have

St (n,m — (2t + 1)) =3 (=D)F"Am—k)—2t) ] (7’ +n—m+ <+ ) I -
4 k=0 r=k+1 2 4 r=—k+m+1
—k—m—1 0 1
I @m+20—1) ] (2(7’+n—|—m) —t+>
r=—2m r=—k+1 2
= ZUm,n,t,kv
k=0
—k—m—1

where Uy, ¢, represents the k-th term of the summation. The term ] (dm +2(r — 1)) is

r=—2m

nil when 3" € N such that —2m < ¢ < —k —m — 1 and 4m + 2(r' — ¢) = 0. This means
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that ' = —2m + t. However, since v < —k — m — 1, we find that, when k < m —t — 1,
—k—m—1 t

[T (4m +2(r —t)) = 0. Moreover, the term 4(m — k) — 2t is nil when kK = m — 7 This
r=-—2m

means that 4(m — k) — 2t = 0 when t is even. We suppose that ¢ is even. Then, we can rewrite

1
S (n, m — 1(215 + 1)) by splitting the sum in two parts as such:
1
Sm (Tl, m — Z(2t + 1)) = Um,n,t,k —+ Z Um,n,t,k- (414)

t
By using the substitution k <— m — bJ — k on the first sum of Eq. (4.14), and the substitution

t
k+ —m+ {QJ + k on the second sum of Eq. (4.14), we can regroup both sums to obtain

Sm (n, m — 111(225 + 1)) = (Um,n,t,m FJ . + Um,n,t,mf FJ +k) . (4.15)

k=1 2 2
We have
Um,m,m_ FJ » :(—1)2m_ EJ _k4k ﬁ (7‘ +n—m+ ; + i) ﬁ r
2 r=m-— \‘%J —k+1 r=k+ %J +1
kﬂ%J —2m—1 . (4.16)
II @m+20-1) ]I <2(r+n+m)—t+;),
e r=k+ {%J —m+1
and
t m m
AT  CTIES | S (R ERE T N 1
r=m-— \‘%J +k+1 r=—k+ %J +1
e o (4.17

11 (4m +2(r — 1)) 19[ <2(r+n+m)—t+1).

r=—2m t 2
r=—k+ \‘QJ —m+1
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By factorizing the common terms of Um,n’t’m_ EJ » and Um’nmm_ EJ*’“’ we obtain
Um,n,t,m— \‘%J —k T Um,n,t,m— \‘iJ +k
m " —k+ {EJ —2m—1
:(_1)2”"“{%““41{ I1 <r+n—m+;+i) I - 2H (4m +2(r —1))
r=m— {%J +h+1 r=+k+ {%J +1 r=-2m
19[ (2(r +n+m)—t+ ;) W nit ks
r=—tk+ {%J —m+1
(4.18)
where,
m— \‘%J +k +k+ \‘%J —2m—1
Witk = 11 (r+n—m+;—|— le) 11 (4m +2(r — 1))
r=m-— {%J —k+1 r=—k+ {%J —2m
(4.19)

_ H r H (2(r+n+m)—t—|—;).

r=—k+ \‘%J +1 r=—k+ \‘%J —m+1

By using the index substitutions r < —r, r <= r+m, r <— r—m —1 and r <— r — 1 respectively
on the 4 products in Eq. (4.19), we obtain

—m+ {%J +k—-1
Witk = 11 (—r +n—m+ ; + i) (2m + 2(r —t))
|t
i) (4.20)
k+{%J —m—1

- I1 (T+m+1)<2(r+n+m+1)—t+;>.



Chapter 4. Polynomial Degree Reduction and NDPNN Generalization 59

By using the index substitution r - —2m 4+t — 1 — r on the second product in Eq. (4.20), we

obtain

k+{%mefl
11 (r+m+1)<2(r+n+m+1)—t+;>
r:—k-l—\\ J—m

k+\‘%J—m—1 1
= 11 (t—r—m)(—2T+2n—2m+t+2>

r=—k+ \‘%J —-m

N+

. (4.21)
k+ {§J —m—1 ; .
— Ht (2t—2r—2m)(—r+n—m—|—2+4>
i
k+ {%J —-m—1 . .
= Ht (—2m +2(r —1))) <—r+n—m+2+4)
r=—k+ \\§J —-m
k+ {%J —m—1

=(—1)% 11 (2m +2(r — 1)) (—r+n—m+t+1>

e[ §] 2

kﬂﬂ—mq
= IEJ (2m+2(r—t))(—r+n—m+;+i>.

By injecting Eq. (4.21) in Eq. (4.20), we find that W,,,.r = 0. Consequently, using
Eq. (4.18), we have U VJ_’“ +U tJ+l~c = 0. Using Eq. (4.15), we find that

m,n,t,m— m,n,t,m— {5

2

1
Sm (n,m — 1(275 + 1)) = 0 when ¢ is even. The same can be concluded when ¢ is odd by
1
rewriting S,, (n, m — 1(% + 1)) as such:
1 m— \‘%J -1
Sm (n,m - 1(215—1— 1)) = >

k=

Utk + i Unn k- (4.22)
e

The same steps can then be performed on Eq.(4.22) to show that it is nil. The only difference

t
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t
lies in applying the substitution & <— —m + bJ + k 4+ 1 on the second sum of Eq.(4.22). We
1
can subsequently conclude that m — Z(Qt + 1) is a root of S,,(n, X),Vt € [0, m]. Moreover, we
1
notice that n has no influence on whether m — 1(225 +1) is a root of Sy, (n, X),Vt € [0, m], thus

1
we can induce that S,, (X,m — 1(275 + 1)) = 0,Vt € [0,m]. Furthermore, since p+1 < n <

q,3n’ € [1,q—p] such that n = n' +p. We then have Sy, np = Smnipp = Sm(n’ +p,p). Hence,
we can study the polynomial S,,(n’ + X, X) to prove that

Smn'+ X, X) = (-1)™ ﬁn (4X+2r+1)ﬁ1(r+n’).

In order to do so, we need to prove that deg (S, (n' + X, X)) = m + 1 and that the leading
m—1

coefficient of S, (n' + X, X) is (—1)"4™* T] (r +n'). We have
r=0

m m m —k—m—1
St + X, X) = (-D"™UX —k)+1) I r+n) [Ir I (X +2r+1)
k=0 r=k+1 r=—k+m+1r=—2m

(4.23)

0

II @r+n+2X)+1).

r=—k+1

By examining the monomials of S,,(n" + X, X), we find that deg (S,,(n + X, X)) <14 (—k —
m—14+2m+ 1)+ k < m+ 1. Since we proved that S,,(n' + X, X) has at least m + 1 distinct
roots, deg (Sy,(n' + X, X)) = m+1. To determine the leading coefficient ¢, ,,» of Sy, (n'+X, X),
we observe that every term of the summation in Eq. (4.23) is a polynomial of degree m + 1.
Then, we identify the leading coefficient of every term, and sum it with the other coefficients

to obtain
Cnr = (=14 T (r+n) | A
k=0 r=k+1 r=—k+m+1

m+n)l  m!

= (_1)m4m+1 ,i(_l)k((/f + n’) (m _ k:)!'

By using the index substitution £ <— m — k, we obtain

m . k (m_'_n,)' m - k m+n/
Con = 4" )] ’;)(—1) im0~ 4"+ ) ];)(—1) L (4.24)
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Henceforth, the objective is to show that

UL m+n' o1t (m+n'—1) m+n' —1
I;)( ) ( k ) m! 7,1;[ r+m) ) ml(n' —1)! (=1) m

To do so, we use Pascal’s rule to obtain

Ser(m) e () ()
m—1<_1)k<m+zl — 1) N (_1)m<m+n’ - 1) +nf(—1)’““ <m+Z’— 1)

k=0 m k=0

(4.25)

As a result, by using Eq. (4.25) in Eq. (4.24), the leading coefficient ¢, ,» of S, (n' + X, X) is

m—1
_ m gm+1 m+n —1 o m m+1(m+n,_1>! _ (_1\mgm+1 /
Cn = (=1)"4™ ] < m > =(—-1)"4 —(n’— o (—1)™4 Tl;[()(r—l—n).

1
Thus, since Vr € [0, m], m—1(2r+1) is aroot of S,,(n'+ X, X), and deg(S,,(n'+X, X)) = m+1,

we have

m 1
Sm(n’+X,X):(—1)m4m+1H(X—m+4 (2r +1)) r+n

r=0 r=

= (e (1

= (=)™ JJ4(X —m) +2r+1) H(r—i—n).

r=0 r=0

We then have S,,(n" +p,p) = S and since n = n’ + p, we have n’ = n — p and we obtain
b +p7p

m m—1

Smnp = (—1)™ H(4(p —m)+2r+1) H (r+n—p). (4.26)

r=0 r=0
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By using Eq. (4.26) in Eq. (4.13), we obtain

mj2(n+m— +n m m—1
[MNZ] ( 1) (2t p)(Q”) g 1
v = 4 m) +2r +1 r+n—
( 1)ml2(n+m D) (271) p+n 1 2p—m m—1
= 2r+1) |](r+n—p)
2nt+m=p(2(p —m))(n — p + m)!m! . zgm) 2r+1 25[_m) 11;[0
( 1)ml2(n+m p)(Qn) plj[n 1 n*pﬁnfl
= r
2ntm= p(z( )) (TL -P + m)'m‘ r=2p—m+1 2r +1 r=n—p
Hence, we finally conclude that
[M,N,]] (=Pt m)(zn " g 1
2m2n = 2n=m(n —m)!(p — m) H " H or+1
p— r=n—p r=p+m-+1
The same steps can be followed to determine v%ﬁgn 41 |

Since the elements of VIMN4 are defined using products, recurrence relationships are more

interesting for computation purposes.

M
Corollary 4.4.2.1. Let | € R} and M, N € N such that M < N. Letp = {QJ ,P1 =

M—-1 N N -1
{ J,q: {J and ¢ = {QJ We have

2 2
[M,N,1] (n—m)(p—m)2(p+m)+3) nny
‘V’(m,n) € [[07]) ]] X [[p+ ,Q]] U2m+2 2n lz(n— m — 1)(2m+ 1)(m+ 1)U2m,2n )
*(2n +1)(n+1)(n —m) M,N,l
v 0 1,q— 1], o000 = [MN.]
(m,n) € [0,p] x [p+1,q — 1], vynionis = (n—m+1)(n—p)2(p+n) _|_3)U2m,2n :
[M,N,] C(n=m)(p=m)2(p+m)+5)

V(m, n) € [[Oapl - 1ﬂ X [[pl + 17 ql]] UQm—i-?) o2n+1 — lz(n —m— 1)(2m + 3)(m + 1)U2m+1,2n+17

1. VN ’(2n +3)(n+1)(n — m) SN
2m+1,2n+3 — (n —m4+ 1)(n . p)(Q(p + TL) + 5) 2m+1,2n+1-

‘v’(m,n) € [[07]91]] X [[pl + ]-)QI -

Proof. All the formulas can be derived directly from Theorem 4.4.2. |
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Using the fact that VIMMI = [, and Theorem 4.4.2, we can finally determine the coefficients
(bo, ..., bpr) in the canonical basis for the polynomial degree reduction of P in (-, -); as such:
2]
M _ [M,N,l]
VYm € [0, {TJ]], bom = Qom + X0 Vgplon don
n= \‘%J +1
{ N1 (4.27)
2
Vm € [[07 {%ﬂ], bam+1 = G2mi1 + > U%i\fl’gnﬂaznﬂ
n= \‘%J +1

4.5 Computational Complexity and Examples

In this section, we will compare the computational complexity of determining the canonical
coefficients (by, ...,bar) using Eq. (4.27), and the computational complexity of determining
them by calculating VI as a matrix product. We will also present an example of how Eq.
(4.27) can be used and an example showing its numerical stability compared to the classical
approach.

Proposition 4.5.1. The computational complezity of using FEq. (4.27) is O((N — M)M).

Proof. According to Eq. (4.27), the number of summations and products that are required to
M

N
determine one coefficient b,, is at most 2 ({2J — {QJ > However, this is without counting how

many operations are needed to determine U%‘ffﬁN M According to Corollary 4.4.2.1, the number of
operations to determine v,[fl‘{;lN i constant and does not depend on M or N. Therefore, it can be
ignored for complexity calculations. Since we need to calculate M coefficients, the computational

N M N M
complexity is then of O (2]\/[ QQJ — {2J>> We have 2 QQJ — {QD < N—M+1. Thus,

we conclude that the computational complexity is O((N —

Proposition 4.5.2. The computational complezity of determining (bo, ...,bar) by calculating
VIMNG ysing a matriz product is O((N — M)M?).

MNA - we only need to determine the elements of

Proof. We can assume that to calculate VI
VIMNI whose columns are greater than M, since VIMAMA = [, This is equivalent to performing
a matrix product between a (M +1) x (M +1) matrix and a (M +1) x (N — M) matrix which has
a O((N — M)M?) complexity. The complexities of determining 7™ and (T[M’M’l]>_1 using
Eqgs. (4.3) and (4.7) are negligible compared to a matrix product. Therefore, the computational
complexity of determining (by, ..., bas) by calculating VM- using a matrix product is O((N —

M)M?). n
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According to Proposition 4.5.1 and Proposition 4.5.2, directly computing (by, ..., bys) using Eq.
(4.27) is at least M times less complex than calculating VM-, What follow are two examples
showing the use of Theorem 4.4.2 and Eq. (4.27).

Example 3. N=7M =5

Let | € RY.. Using Theorem 4.4.2, we find that

100000 P20 0

66528 |10
010000 0 [

cop 123552

001000 —H— 0
VB _ 1584 5040
000100 0 i
250 6864

000010 PB= 0
028 5040
1 22—
00000 0 P90

7
For a polynomial P = Y a, X* where (ay, ..., a7) € RS, the canonical coefficients (b, ..., bs) € R®
k=0

of the polynomial of deg;’ee 5 that best approximates P with respect to (-, ), are determined using
Eq. (4.27) as such:

bo =ao+l 616454208 a6
b ::al‘kl6£g§§§;a7
b ::“2'_14;§gla6
)
by = a4+ lzg;g%

bs =as+1? 2(1);18 ar

Figure 4.1 shows an example of a polynomial of degree 7 approzimated by a polynomial of degree
5 on the interval [—5,5].

Example 4. N =150, M =40,l =1

In this example, we want to reduce a polynomial of degree 150 to a polynomial of degree 40
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FIGURE 4.1: A polynomial of degree 7 (in blue) approximated by a polynomial of degree
5 (in orange) on the interval [—5, 5].

on the interval [—1,1]. Figure 4.2.(a) shows the original polynomial in blue and its approxima-
tion in orange using the direct formula while figure 4.2.(b) shows the original polynomial in blue
and its approxrimation in orange using the matriz multiplication approach. We notice that there
are artifacts that corrupt the approrimation using the matriz multiplication approach and this is
mainly due to the floating point precision of the computation. Indeed, the matriz multiplication
approach involves additions and multiplications between floating point quantities in order to de-

MNA - As a result, the direct formula is numerically more stable since,

termine one element of V|
according to Theorem 4.4.2, every element of VIM:NA 4s the multiplication between a floating
point quantity I and a fraction. In fact, a fraction is defined as a floating point quantity but it
results from the division of two integer quantities. Consequently, the numerical floating point
representation of the fraction will be better preserved than when using the matriz multiplication

approach, hence the smooth approximation that is observed in Figure 4.2.(a).

4.6 N-Dimensional Polynomial Neural Networks and Polynomial De-

gree Reduction Heuristic

1DPNNSs are an extension of IDCNNSs such that each neuron creates a polynomial approximation
of a kernel that is applied to its input. Given a network with L layers, such that a layer [ € [1, L]
contains V; neurons, a neuron 7 € [1, N;] in a layer [ produces an output yfl) from its previous
@)

[

layer’s output Y;_;. The neuron possess a bias b,’, an activation function fi(l), and D; weight
vectors VVZ-(C? corresponding to every exponentiation d of its previous layer’s output up to a
degree D;. Eq. (3.1) shows that the weight VVi(C? corresponding to ¥;¢, can be of any dimension
as long as the convolution with Y4, remains valid. For instance, if Y}?, is a list of 2D feature

maps, Wi(é) has to be a list of 2D filter masks. Therefore, the equation of a 1IDPNN neuron
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(a) Polynomial reduction using the direct formula. (b) Polynomial reduction using the classical matrix mul-

tiplication approach.

FIGURE 4.2: Comparison between the use of the direct formula and the use of the matrix
multiplication approach on polynomial reduction.

can be applied on images and videos as long as the dimension of the weights are adjusted
accordingly. Hence, the same equation governs the behavior of a 2DPNN, a 3DPNN and an
NDPNN in general. Furthermore, this also applies to the gradient estimation of an NDPNN
detailed in Section 3.2.3, so even the backpropagation remains unchanged. Furthermore, we
propose a method to reduce the degree of each layer after an NDPNN network is fully trained
on a given dataset. This makes use of the fast polynomial degree reduction formula that we
proposed in Section 4.4.2, which can generate a polynomial of low degree that behaves the
same as a given polynomial of higher degree on a symmetric interval. The method that we
propose is a post-processing method that can compress a fully trained NDPNN, thus making
it faster and lighter, without sacrificing its performance on the dataset it was trained on. The
memory and computational efficiency gain mainly depend on the topology of the NDPNN and
the performance loss tolerance. Although the polynomial degree reduction is performed on a
symmetric interval and an NDPNN can use unbounded activation functions in general, we use
the fact that, after training, the NDPNN weights do not change. So the input of each layer
will be bounded in a certain interval when the NDPNN is fed with samples from the training
set. The bounding interval may not be symmetric, but every interval is contained within a
symmetric one, which allows us to properly use the polynomial degree reduction formula. Eq.
(3.1) does not clearly show how the polynomial degree reduction can be achieved, which is why
we consider the case of IDPNNs to demonstrate the principle.

In the 1D case, the output of a given layer [ is Y; which is a list containing the outputs of every
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neuron in that layer. The output of a neuron 7 in that layer, yi(l) = fi(l)

(xi-”), is a vector of size
M;. Similarly, the weights of that neuron with respect to the exponentiation degree d, WZ-(;), is
a list of N;_; vectors of size K;. Therefore, expanding :13 ) from Eq. (3.1) to compute each of

its vector element independently produces:

Dl Nl 1Kl 1

vm e [0,M = 11.2%(m) = 3 3 3 wlk) (3 (m + k) + 00

d=1 j=1 k=0

Nl 1 Kl 1 D, ) d b(l)
k 7
Z z]d (m + )) + Nl—lKl

jlk;O

B )

such that

o b
P i
ijk Z wwd Nl—lKl ’

and X is an indeterminate. This shows that the output of a neuron ¢ in a layer [ is the result of
the summation of N;_; K distinct polynomials, and that the layer consists of N;/N;_1 K, distinct
polynomials. In the general case of an NDPNN, the number of polynomials in a layer | would
be N;N;_; multiplied by the receptive field of that layer. Figure 4.3 shows an overview of the
heuristic algorithm and Algorithm 1 describes the process of compressing an NDPNN by means
of layer-wise polynomial degree reduction. F' represents the trained model which takes as input
samples from a given training set 1" and processes them into an output. Note that given a model
F, one can access the output of its layer [ by using F;. The algorithm needs a performance
evaluation function € which takes a model, a dataset and its labels T},.,. as input and needs
a reduction tolerance ey which stops the algorithm when the performance evaluation of the
reduced model is below €j. € can be any performance evaluation metric which outputs a higher
score when the performance of the model is better, such as the accuracy. The algorithm starts by
initializing the reduction of each layer R to 0 and by determining the smallest symmetric interval
[—A;, Aj] where the values of the input of each layer [ are bounded. Then, it goes through each
layer I, it creates a copy F' of the initial model F, and reduces every layer’s degree D; of the
copy F by the last degree reduced R on the symmetric interval [— A, Aj], except for layer [’
which has its degree reduced by R+ 1 on the symmetric interval [— Ay, Ay] as expressed by the
instruction D, « D, — (Rl + ]l{l/}(l)) where 1 is the indicator function. The weights of each
layer of the initial model copy F' are therefore replaced during this process by reduced weights
calculated via the polynomial degree reduction formula. If a layer I’ has been reduced to the

degree 1, the algorithm does not attempt to reduce it further and ignores it by assigning a nil
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FIGURE 4.3: Overview of the layer-wise degree reduction algorithm.

performance Py = 0. It then evaluates the copy F using the performance evaluation function e
and stores the score Py in a list. After performing these steps for every layer [’ in the model,
the algorithm determines the layer [ whose reduction impacted the performance of the model
the least and increases its reduction R; by 1. These steps are repeated until all the layers are
reduced to a degree of 1 or until the best performance of the current reduction is below €.
Following that, the algorithm creates a final copy F of the model F' and reduces the degree of
each layer [ according to the reduction limit R; determined in the previous steps. The algorithm

then returns the most reduced model within the limit of €.

4.7 Chapter Summary

In this chapter, we developed a fast and stable mathematical formula for polynomial degree re-
duction on a symmetric interval for the canonical basis which can not only be used on NDPNNss,
but on any model that either uses polynomial kernels or whose core is built on a polynomial
approximation. We also showed that the equations governing the behavior of a IDPNN’s for-
ward and backward propagation are invariant with respect to the dimension of the signal which
allowed us to generalize the 1IDPNN to an NDPNN that can process 2D and 3D signals. In

addition, we used the polynomial degree reduction formula to develop a heuristic algorithm that
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Algorithm 1: NDPNN layer-wise polynomial degree reduction

Data:
o L, N, D, W o Vi e [1,L],%(,d) € [1,N] x [1, D]
e Trained model F
e Training set T and training labels T},
e Evaluation function e(F,T, Ty ye)
e Reduction tolerance ¢,

Result:
o D, W bYW e [1, L], Y(i,d) € [1, Ni] x [1, D]
e Reduced model F

A+ (0,...,0),

R« (0,...,0)L

P+ (egy.., €0)L

A; <+ max|T)|

for [ € [2,L] do

| A+ max (|-, (T)])

end

[+0

while P; > ¢y A max (D; — R;) > 1 do

le[1,L]

for I’ € [1,L] do

F+«F

for 1 € [1,L] do

Dl — D — (Rl + ]l{l/}(l))

if D, > 1 then

for i € [1,N;] do

(W;?) 15,0 E(U) ereducefdegreeftoin((Wi((?

» 7

). b0 DDA
[1.D;]

F +re euro. Weigh; l<l). LLU) , Dy, il
place_neuron §<17)1 ,( zd) A’.l y Dy 1,

}Dl’ ~0
Break the innermost For loop

end

end

Py 4 €(F, T, Tyrye) * (1= L0y (P))
end

[+ argmaxP
le1,L]

if F.l. > € then
R« R;+1
end

end

F«F

for i € [1,L] do

Dl — Dl — Rl

for i € [1, N;] do

<(W$>) ) ,55”) eredllceidegreeitoin<<Wi(fl)) ,bgl),Dl,Dl,Al)
‘@ J11,Dy] 1.0

F «replace_neuron_ weights (F, 0o, (Wi((ﬁ)) _ ,Dy,i, l>

[1.D;]

end
end
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performs layer-wise degree reduction on a pre-trained NDPNN while preserving its performance

on the dataset it was trained on.



71

Chapter 5

Plant Species Recognition with
Optimized 3DPNN and Variably
Overlapping Time—Coherent Sliding
Window

5.1 Introduction

Agriculture is a sector that requires multi-disciplinary knowledge to steadily evolve [76, 77, 78]
since large-scale food production necessitates a deep understanding of every relevant plant
species [79, 80, 81] and highly advanced machinery [82, 83, 84] to ensure an optimized yield.
With the emergence and the recent practical successes of the Internet of Things, robotics and
artificial intelligence [85], the sector has observed a surge in smart farming solutions which has
led the march to the fourth agricultural revolution [86]. Consequently, new fields such as digital
agriculture [87] and precision agriculture [88] have become intensively researched which has
led to an ever-increasing pace in innovation. Although the integration of artificial intelligence
is making its way to digital agricultural applications such as crop planting [89, 90, 91] and
harvesting [92, 93, 94], it is still limited to mechanical tasks that mainly require environmental
awareness [82]. A number of issues that are highly concerning for farmers such as crop disease
detection, plant-growth monitoring and need-based irrigation have only recently started to gain
an interest in the machine learning community [95]. Despite the efforts to create automated
systems to resolve such issues [96, 97], only highly specialized systems are created which only
work with specific species or variants under constrained conditions [98, 99, 100]. Furthermore,
due to the lack of voluminous labeled data for each species and for each specific issue [95],
automated systems mainly rely on advanced visual feature engineering that requires a team
of plant specialists, and only partially rely on machine learning for using these features to

extract useful information [101, 102, 103]. In fact, the sheer diversity of plant species, variants,
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diseases, growth stages and growing conditions makes manual feature engineering unfeasible to
cover every individual farmer’s need. While some attempts at creating massive plants datasets
have been successful [104, 105, 106], their usefulness was limited by the species present in them
and the initial task they were created for. For instance, a dataset containing species grown in
a tropical biome for the purpose of species recognition has limited to no usefulness for farmers
working in a grassland biome who want to establish the presence of a disease in certain plants.
As a result, the EAGL-I system [107] has been recently proposed to automatically generate a
high number of labeled images in a short time (1 image per second) in an effort to circumvent
the problem of the lack of data for specific needs. Consequently, two massive datasets were
created with this system [108]; one that contains 1.2 million images of indoor-grown crops and
weeds common to Canadian prairies, and one that contains 540,000 images of plants imaged in
farmland. Also, a publicly available dataset called "Weed seedling images of species common to
Manitoba, Canada" (WSISCMC) [23] which contains 40,000 images of 8 species that are very
rarely represented in plants datasets was created with the EAGL-I system. The purpose of
the creation of the dataset was to demonstrate the capability of the EAGL-I system to rapidly
generate large amounts of data that are suitable for machine learning applications and that can
be used to solve specific digital agriculture problems, such as the ability to recognize several
species of invasive species which are responsible for the loss of hundreds of millions of dollars.
However, in [107], the validity of the dataset was only tested for a binary classification problem
consisting in differentiating between grasses and non-grasses without determining the species of
the given plant itself. While the model that solves this problem gives an indication on how well
the samples of the dataset are distributed to allow for grass differentiation, it does not provide
enough information on how detailed the samples of the dataset are at a granular level to allow
the identification of the species they belong to. Indeed, the higher the number of mutually
exclusive classes, the more distinctive and detailed the spatial features of the plants need to
be. Therefore, we chose to tackle the problem of plant species recognition on the WSISCMC
dataset leading to a solution that can help the early eradication of grasses that are harmful
to the growth of certain crops. Furthermore, this constitutes a step further in validating the
dataset for machine learning applications, and by extension, the EAGL-I system for the creation
of meaningful datasets. Thus, this work aims at maximizing the plant recognition accuracy on
the WSISCMC dataset by creating a highly reliable and accurate network using the model
development framework shown in Figure 5.1 in order to provide insight on how to improve the

data acquisition process to produce cleaner samples for future massive datasets.

The outline of this chapter is as follows. Section 5.2 discusses the most recent works in plant
species recognition while Section 5.3 formulates the theoretical foundation of the VOTCSW
method. Section 5.4 presents the model development framework established to produce a highly
accurate model for the WSISCMC dataset and discusses the results obtained while providing
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FIGURE 5.1: Block diagram for producing a reliable plant species classification model.

insights on how the methods developed in Section 4.6 and Section 5.3 influenced them.

5.2 Related Work

Plant species recognition is one of the most important tasks in the application of machine
learning to digital agriculture. In this context, behaviour specific to a species will inform the
identification of a plant’s disease or the plant’s need for resources such as water or light. The
most common approach to identify the species of a given plant is to analyze its leaves [109].
In fact, many public datasets [104, 110] are only composed of leaves scanned in a uniform
background. The methods that are mostly used rely either on combining feature engineering
and machine learning classifiers or using deep learning models for both feature extraction and
classification.

Indeed, Purohit et al. [111] created morphological features based on the geometric shape of any
given leaf and used these features to discriminate between 33 species of plants using different
classifiers. They achieved a state-of-the-art 95.42% accuracy on the Flavia dataset [104] and
they demonstrated that their morphological features are superior to color features or texture
features. However, they did not compare the efficiency of their features to ones that are fully
determined using deep learning models. On the contrary, Wang et al. [112] created a novel
multiscale convolutional neural network (CNN) with an attention mechanism that can filter out
the global background information of the given leaf image and highlight its saliency which allows
it to consistently outperform classification models based on morphological feature extraction, as
well as classification models based on well-known CNN architectures. They explain that CNNs
are better at extracting high-level and low-level features without the need to perform image
preprocessing and that their model which combines both these types of features in an attempt
to discover estimatable relationships outperforms regular CNNs. However, the models that were
developed were only trained on the ICL dataset [110] which only contains leaf images, and can
therefore be hard to use on images of entire plants.

Mehdipour Ghazi et al. [113] have considered training versatile architectures of CNNs on the
LifeCLEF 2015 [106] which contains 100,000 images of plant organs from 1000 species that

are mostly captured outdoors. They proposed a data augmentation approach that randomly
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extracts and scales a number of random square patches from any given image before applying
a rotation. These patches and the original image are then resized to a fixed size and the mean
image is substracted from them in order to keep the most relevant features. The resulting images
are then fed to a CNN model which outputs a prediction for each image. The prediction of the
original image is then determined by summing these predictions together. This aggregation as
well as fine-tuning pre-trained networks such as VGGNet [114], GoogLeNet [115], and AlexNet
[116] with different hyperparameters controlling the number of weight updates, the batch size
and the number of patches, allowed them to achieve state-of-the-art results on the dataset,
notably by fusing VGGNet and GoogLeNet. The authors observe that, when training networks
from scratch, simpler architectures are preferred to the kind of architectures they used in their
work. Indeed, they could not train any network from scratch to produce satisfactory results,
and they did not attempt to create simpler and more specialized architectures for the problem.

The work presented in this thesis differs from the related papers in two ways:

1. The WSISCMC dataset contains images of entire plants that trace different growth stages
such that a trained classifier may be able to integrate the temporal evolution of a species
organs in its inference, and may produce features richer than the ones that are only de-

termined from separate organs such as leaves.

2. Concomitantly, the neural network architectures that we used are constructed in various
stages of simplicity. Starting from a simple 2DCNN architecture, a different data repre-
sentation suitable for a simple 3DCNN architecture is built, then both architectures are
extended to NDPNNs. Finally, highly complex architectures such as InceptionV3 and
ResNet50V2 are considered.

5.3 Variably Overlapping Time—Coherent Sliding Window

The WSISCMC plant species classification dataset used in this work contains images with
varying sizes which are not suitable for neural networks that only accept an input with a
predetermined size. As a result, there is a need to transform these images into a representation
with a fixed size. In most cases, shrinking the images to the smallest size present in the dataset
is enough to train a network to produce very accurate results. However, image resizing comes
at the cost of either losing important details that may be detrimental for the performance of
the network when shrinking, or adding synthetic pixels when padding or magnifying. Thus, we
created the Variably Overlapping Time—Coherent Sliding Window (VOTCSW) technique, which
transforms each image, regardless of its size, to a 3-dimensional representation with fixed size
(h,w, M). The VOTCSW allows this representation to be interpreted as a video of size (h,w)
containing M frames by ensuring that two consecutive frames are spatially correlated hence the
"Time—Coherent" term. Therefore, the 3-dimensional representation can be fed into 3DCNNs
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and 3DPNNs as a tensor of shape (h, w, M, C') where C'is the number of channels present in the
original image. Figure 5.2 (adapted from [117]) shows the difference between a 2D convolution
applied on an image and a 3D convolution applied on a video similar to the ones that can be
created using the VOTCSW method. The difference resides in the way a filter is defined and the
way it slides. To apply 2D convolution on an image, a 2D filter — of size 3 x 3 in this example —
slides over the 2 dimensions that define an image, namely, height and width, to produce a feature
map. To apply 3D convolution on a video, a 3D filter — of size 3 X 3 x 3 in this example — slides
over the 3 dimensions that define a video, namely, height, width and time, to produce a feature
map. The VOTCSW method is a safe alternative to resizing as it does not add nor remove any

H

(a) 2D convolution on an image.
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(b) 3D convolution on a video.

FIGURE 5.2: Difference between 2D convolution and 3D convolution [117].

pixel from the original images, or at least, it minimizes the need to do so under certain conditions
that will be discussed below. It is based on the sliding window technique (hence the "Sliding
Window" term) which is a powerful signal processing tool that is used to decompose a signal
containing a high number of samples into small chunks called windows containing a smaller
number of samples that can be processed faster. Consecutive windows overlap with a certain
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ratio a € [0, 1] in order to ensure a correlation between them. The classical use of this technique
consists in determining a window size that ensures enough representative samples to be present
in a single window and an overlap that allows better processing performance. However, there
is no consideration as to how many windows are extracted for each different signal length. In
constrast, our proposed VOTCSW method aims to extract exactly M windows of a fixed size
from any signal regardless of its length. This is achieved by calculating an overlap for each
signal length, hence the Variably Overlapping term.

Given an image of size (H, W) and a desired 3-dimensional representation (h,w, M), we define
the following relationships:

H =h+Ny(l-a)h

w :w+Nw(1—a)w7 51)

where a € [0,1] is the window overlap, N}, is the number of windows that overlap with their
predecessors and that are needed to cover the height of the image, and N, is the number of
windows that overlap with their predecessors and that are needed to cover the width of the
image. Following that, the total number of windows M needed to cover the image in its entirety
is
H—-h W —w

M=(14+N,)(14+Np)=|——+1]|—+1]. 5.2

e = (G50 (g ) >
Eq. (5.2) establishes a relationship between the overlap «, the size of the image (H, W) which

is fixed, the size of the sliding window (h,w) which is fixed and the total number of windows
M which is also fixed.

Proposition 5.3.1. The value of o with respect to H, h, W, w and M s

((H — hyw + (W — w)h) +/(H — h)w + (W — w)h)2 + dhw(H — h)(W — w)(M — 1)

a=1-—

2hw(M —1)
(5.3)

Proof. From Eq.(5.2), we have

(k) ()

< hwM(l-a)’=(H-h+h(l-a)(W—-w+w(l - a))
< hwM(l—a)>=(H—-h)(W —w)+ ((H—-hw+ (W —w)h)(1 —a) + hw(l — a)?
— hw(M —1)(1 -a)®> - ((H —h)w+ (W —w)h)(1 —a) — (H — h)(W —w) = 0.
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This is a second degree equation with (1 — ) as unknown. Therefore, the discriminant is
A= (H-hw+ W —wh)?*+4hw(H - h)(W —w)(M —1).

Since M is the number of windows, it is necessarily greater than 1. Moreover, H > h and
W > w because the window size is always smaller than the image size. Consequently A > 0
and we have two solutions expressed as such:

(H = hyw + (W — w)h) + VA
2hw(M — 1) '

1 — Q2 =

However, vA > ((H — h)w + (W — w)h) and since a € [0, 1] by definition, then 1 — a > 0 and
only the following valid solution remains:

((H —h)yw + (W —w)h) + VA
2hw(M — 1) '

a=1-—

Eq. (5.3) was determined from the fact that o < 1. However, a needs to be positive as well.
Therefore, there is a need to determine a condition on the choice of h, w and M with respect
to H and W to ensure the positivity of a.

Proposition 5.3.2.
a>0 < hwM > HW.

Proof. We suppose that a > 0.

a>0 <— 1l—-a<l <=

(H — hyw + (W — w)h) +/(H — h)w + (W — w)h)2 + dhw(H — h)(W — w)(M — 1)
2hw(M — 1)

<1

<~
VH = R)yw + (W — w)h)? + dhw(H — h)(W — w)(M — 1)
< 2hw(M —1) — ((H — h)w+ (W —w)h)
—
(H — h)w + (W —w)h)?* + dhw(H — h)(W — w)(M — 1)
<4h*w*(M —1)* + ((H — h)w + (W — w)h)* — 4hw((H — h)w + (W —w)h)(M — 1)
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= dhw(M —1) ((H - h)(W —w) + (H — h)w + (W —w)h — hw(M — 1)) <0
= ((H =)W —w) + (H = hyw+ (W = w)h — hw(M — 1)) <0
— HW —Hw—-hW +hw+ Hw — hw+ hW — hw — hwM + hw <0
< HW —hwM <0
<~ hwM > HW
|

Proposition 5.3.2 implies that h, w and M can not be chosen arbitrarily. Furthermore, since h,
w and M need to be fixed before transforming the images of the dataset, they have to verify this
condition for every image of size (H,W). As a result, we need to determine tighter conditions
to be able to determine h, w and M consistently. Let 5 be the aspect ratio of an image of size
(H,W) such that W = SH and let v be the aspect ratio of a window of size (h,w) such that
w = vh. We then derive from Eq. (5.1)

H —~h
W=w+(l-a)wN, < pH =~vh+ (1 —«a)phN, < Nw:u.
(1 —a)yh
. H—h o
And since from Eq. (5.1), we have N, = m, we deduce by dividing N, by N, that
BH — ~h
N,=———N d th
~(H = 1) » and thus
BH — ~h
M=N,+1)|——Np,+1]|. 5.4
Wi+ )<7<H—h> et (5.4)

H—
Since M is an integer constant, and N} is an integer constant, uNh should also be an

v(H —h)
. o BH —~h
integer constant. As a result, we can define a positive constant p such that p = m
’)/ —

only variables in p are § and H since they depend on the image being processed. v and h are

. The

not supposed to change with the size of the image being processed. Consequently, we can write

p:m < y(H - h)p+~h=pH <= H(3—p)=vh(1—Dp). (5.5)

h(1 —p)

This means that when p # 1 and S # yp, we have H = 7 . This implies that, in order

for M to be a valid integer, every image height has to be resizgd to H, which contradicts the
purpose of the VOTCSW. Therefore, we consider the case where 3 = vp. We can deduce from
Eq. (5.5) that, under this condition, p will be equal to 1 and 5 = . As a result, the aspect
ratio of each image should be equal to that of the sliding window for M to be a valid integer,
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which is a simpler condition than the previous one. In the following, we will only consider the
case where 5 = ~ since the dataset used in this work contains images that have the same aspect
ratio. When 3 = v, M = (N, + 1)? which means that M should be a square number. This is
yet another condition on how to choose M and this narrows down the possibilities even further.
Under this assumption, the calculation of o can be simplified.

Proposition 5.3.3. When 8 =, a only depends on M, H and h and its value is

vVMh—H

= — . 5.6
h(vVM —1) (5.6)
Proof. By combining Eq. (5.1) and Eq. (5.4), we have
M= (N, +1)?= JH_h-+12¢:>u—aVMM:4H—am2
" (1—a)h
< (l—a)hvVM = H — ah
PN vVMh—H
a=————.
h(VM —1)
e : : H
The positivity of « is verified when h > ——. |

VM

When extracting the windows from an image, we should limit the overlap « to not reach its
extremum in order to obtain consistent windows. Therefore, we impose on « two limits o,
and ay,; such that 0 < i < a < Qpae < 1. Given H,,,.., the height of the biggest image
in the dataset and H,,;,, the height of the smallest image in the dataset, we can formulate a

condition on h.

Proposition 5.3.4. The height h of the sliding window has to verify the following condition:

Hmaac < h < Hmzn

VM = Qpine(VM —1) = 7 VM — oo (VM — 1)

Proof. We know that H,,;, < H < H,4.. Consequently, by using Eq. (5.6) we have

\% h H max < \% h H min <

<

min S AT 1) S RIS

Therefore, by extracting h from Eq. (5.7) we obtain

(5.7)

Hmax Hmzn
VM — in(VM — 1) - \/_ Umaz(VM — 1)
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Although a condition on the choice h is important, the parameter that will most likely be chosen
first when using the VOTCSW technique is M. However, a,,,;, and 4, are as important as M
because they specify the maximum and minimum amount of correlation between two consecutive

windows. Hence, a condition on their choice is also important.

Theorem 5.3.1. The parameters M, tpin and Qg can be determined in 6 different ways. For
each way, there are conditions that need to be verified in order to extract the windows correctly.
o When determining M then Qi then g, the following conditions apply:

VM >

Hmin

H vV
Qimin S max + (1 i Hma;t) M

Hmin Hmzn V M-1

H. min V M H min
Xmax 2 <1 - ) + Omin
Hmax V M-—-1 Hmaz

o When determining M then unq. then auu,, the following conditions apply:

=

max

VM >

Vv

amaa:

Hmin
H

Hmax V M—-1
mazx Hma:r: V M
Qmin S Amax + (1 - )

o When determining o, then M then au,.., the following conditions apply:

Hmaz - Hminamm
vVM >

Hyin\ VM Hy (58)
AUpax 2 <1 - mln) + = Apin
Hmaa: V M - 1 Hmaac
o When determining Qupin, then au.. then M, the following conditions apply:
Hmm
Amaz Z 1— (1 - amzn)?
= . (5.9)
\/M 2 Hma:c ama:c ﬁmznO[mm

Hmzn(]- - O-/min) - Hmax(l - amaa})
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o When determining Q.. then M then iy, the following conditions apply:

V

o 1— Hmm
mar Hm

\/M maz¥maz

Hmin - (1 - O-/maw)HmaJ:

Hmax V M
Amax + (1 - )

Hmin V M—1

o When determining aupqa. then au, then M, the following conditions apply:

v

max
Qmin o
man

IN

Omag - -
Hmaa:
Hmaz
Omiin S 1 - H ] (1 - amax)
B ..a — HinOmi
AT M > maxYmax min“Ymin
- Hmm(l - amin) - Hmax(l - amam)

Proof. The proof of this theorem is based solely on the result of Proposition 5.3.4. The condition
for this Proposition to be valid is

Hmaa: Hmzn

\/M_ amin(\/M_ 1) = \/M_ amam(m_ 1)

Therefore we get

Honaw (VM = (VM = 1)) < Hopiny (VM = i (VM = 1)) . (5.10)

This equation establishes a relationship between M, a,,;, and «,,., and the conditions stated
in the theorem are all derived from it. We will only prove the case where a4, is determined

first, then «,,;, then M because it illustrates how the 5 other cases are proved. We begin by
isolating v M from Eq. (5.10) as such:

v M (Hmaz(l - amaz) - Hmzn(l - amin)) S Hmmamin - Hmamamam~

The right term of the inequality is negative since H,,in < Hopae and pin < Qe by definition.
Consequently, if the term (Hynaz(1 — Qmaz) — Himin(1 — qumin)) Was positive, it would result in
v/M < 0 which is false by definition. Therefore, it must be negative for M to exist. As a result,
we obtain the following condition:

H, oz — Hinmi
/M > maxYmax minGmin .
o Hmzn(l - amin) - Hmaz(l - amam)
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The fact that (H e (1 — @maz) — Hunin(1 — @min)) < 0 leads to

Hmaz
<1-

Qmin (1 - amax) .

man

However, a,,;, > 0 by definition, so the right term of the inequality has to be positive for a,,in
to exist. Thus, we obtain the following condition:

Hmz’n

o >1- .

e = Hmaz
The other cases are proved by using the same reasoning. [

Theorem 5.3.1 shows that in 2 particular cases described by Egs. (5.8) and (5.9) , when aypnn
is determined first, there is no constraint on its value other than that it should be positive and
lower than 1. These 2 cases should be preferred over the other more constrained ones when
choosing the values of ,,in, Qe and M. The theorem also ensures the choice of well defined
parameters, given H,,;, and H,,., only. Nevertheless, in some datasets, the difference between
H,.;, and H,,,. is considerable and may lead to the choice of a high number of windows M, a
maximum overlap a,,q, close to 1, or a minimum overlap «,,;, close to 0. Therefore, one can
also arbitrarily choose the parameters that are deemed appropriate and then choose a maximum
height H,,.. and a minimum height H,,;, such that:

I:Ima:p \/M_ amzn(\/ﬂ_ 1)

< .
Hmin B \/M_ Oémax(vM— 1)

(5.11)

After performing this choice, each image in the dataset whose height exceeds H,,q, should
be shrinked to ﬁmm, and each image whose height is less than FImm should be padded or
magnified to H,,. Although this defeats the purpose of the VOTCSW method, it is still
better than resizing all the images in the dataset since the images whose heights are within
[Flmm,lf[max] will remain the same. Using Proposition 5.3.3, Proposition 5.3.4 and Theorem
5.3.1 enables any image whose height is between the limits H,,;, and H,,,, and whose aspect
ratio § is the same as that of the sliding window ~ to be transformed in a fixed 3-dimensional
representation (h,~yh, M). However, the order of the windows in the 3-dimensional sequence
should not be arbitrary as it should ensure a correlation between every two consecutive windows.
The VOTCSW method is based on the sliding window technique which is widely used on 1-
dimensional signals because the inter-window correlation is always ensured. However, this is
no longer guaranteed for higher dimensional signals such as images as shown in Figure 5.3
which describes the sliding window technique on an image represented by a rectangle where
the the light blue color represents a window a the dark blue color shows the overlap between

two windows. As represented by the arrows, the window slides from left to right and resumes
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to the initial position when it reaches the boundaries of the image. It then slides one step
downward and continues sliding from left to right until it covers the whole image. This sliding
pattern does not ensure that every two consecutive windows are correlated and this can be
noticed in the aforementioned figure where window n and window n + 1 are totally separated.
Nevertheless, this usually does not matter in machine learning applications where each window

—

- o &

n+1

FIGURE 5.3: Sliding windows on a rectangle representing an image. The arrows represent
the sliding pattern and the dark blue color shows the overlap between two windows.

can be treated independently and the result is determined by aggregating the results obtained
on each individual window. However, the VOTCSW method consists in creating a causal 3-
dimensional representation that is analogous to a video and which can be processed as a video
in the sense that there is a time coherence between two consecutive windows meaning that
one necessarily appears before the other and is spatially correlated with it. To ensure that, we
define, given a matrix I of size H X W representing an image, the following sequences describing
a time—coherent left-to-right, top-to-bottom sliding pattern:

Vn € [0, M — 1],

= 7).

a, = (1 — a)hé,,

b, = a, + h,

Cp = ((1 — (=1)") VMQ_ ! (=1 (n— @MM)) (1 — a)vh, (5.12)
dy, = ¢, + 7h,

Loc, 1

I bn Cn ‘[bn dn
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where W, is the n-th window extracted from the image I, h is a constant determined using
Theorem 5.3.1 and Proposition 5.3.4, and « is calculated using Proposition 5.3.3. This pattern
is a modification of the one described in Figure 5.3 such that when the window slides to the
right edge of the rectangle, it slides downward by a step, and slides back to the left until
reaching the left edge before it slides downward again and slides back to the right edge. As
a result, this pattern ensures the time—coherence of the 3-dimensional representation created
by the VOTCSW method. Another property of the VOTCSW method is that it performs an
oversampling of the pixels due to the window overlap that enables the window to cover the same

pixel more than once.

Proposition 5.3.5. The maximum oversampling factor for a pizel in an image that is processed

with the VOTCSW method with an overlap « is ﬁ
—«

Proof. We designate by (z,y) a pixel in a given image. We suppose that h, M, and v were chosen
prior to the use of the VOTCSW method and that the overlap o was calculated for the image.
For the pixel (z,%) to be contained in a given window (n,m) such that (n,m) € [0, VM — 1],
the following conditions need to be verified:

=
|
£
>
3
IA

r<(l—a)hn+h
(1—a)yyhm <y < (1—a)yhm+yh

By extracting n and m from the previous conditions, we obtain

CHNEN S L
(1 —-a)h l—la - T (1-a)h

) Y ’
(1—a)yh 1—« _m_(l—oz)yh

which determines what values of n and m are valid for a window to contain the pixel (z,y).

x T 1 1
_ - = different
(1—a)h <(1—a)h 1—oz> 1 _q

values in [0,vM — 1], and the same can be inferred for m. Since every combination of n and

Since n is an integer, it can take at most

m that follows the previous conditions can determine a window that contains the pixel (x,y),

the total number of times the pixel (z,y) is present in a window is at most ﬁ |
-«

Proposition 5.3.5 implies that ., and ;. are means to control the maximum oversampling

factor of a pixel. Moreover, it implies that, the smaller the image, the more its pixels will

be oversampled which will definitely alter the class distribution for a classification problem if

the size distribution in each class is uneven. This may prove useful in certain cases of image



Chapter 5. Plant Species Recognition with Optimized 3DPNN and Variably Overlapping
Time—Coherent Sliding Window

85

classification where the images representing the least represented class happen to be the smallest
in size. Finally, the VOTCSW method can be summarized in the following steps:

1. Ensure that the image dataset has a single aspect ratio f and determine H,,,, and H,,;,.

2. Choose min, Qmaz, M and h as recommended in Theorem 5.3.1 and Proposition 5.3.4.
Define v = .

3. Choose a time-coherent sliding pattern such as the one described in Eq. (5.12) and use it
for each image in the dataset.

5.4 Experiments and results

In order to produce meaningful results and to reliably choose a model over the other, the
framework shown in Figure 5.1 was designed. This section details and discusses each block
in the diagram and provides an in-depth analysis of the results obtained on the WSISCMC
dataset.

5.4.1 Preprocessing

The WSISCMC plant species classification dataset that is used in this work was mainly con-
structed to specifically overcome the limitations of the current state-of-the-art datasets used in
machine learning which consist in a lack of sufficient variety and quantity. It contains 38, 680
high-quality square photos with different sizes of 8 different species of plants taken from different
angles, and at various growth stages, which can theoretically enable a well-trained classification
model to recognize plants at any stage in their growth. Moreover, the plants are potted and
placed in front of a uniform background that can easily be substituted with field images, for
example. There are also images which are taken with a mobile phone in various backgrounds
to enable trained models to be tested on unprocessed images. In [107], it was shown that
the WSISCMC dataset allows the production of a reliable binary classifier that differentiates
between grasses and non-grasses. However, the dataset was not used to train a more complex
model of plant species classification. A first attempt to evaluate the difficulty of this task on this
dataset was to create a baseline 2DCNN that takes images resized to 224 x 224 and attempts
to predict the species of the plant present in the dataset. The tested accuracy of that baseline
model was 49.23%, which was mediocre.

It was then determined, after an analysis of the dataset, that there was a significant imbalance
in the class distribution. Moreover, this distribution was radically different between the train-
ing set and the test set. Furthermore, the size distribution was also very different between the
training set and test set, such that the maximum image size in the training set was 1226 x 1226

and the maximum image size in the test set was 2346 x 2346. In addition, the distribution of
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size per class also varied between the training set and the test set. Therefore, the dataset was
entirely redistributed into a training set and a test set that have the same class distribution
and the same size per class distribution while keeping the same train-test ratio as the initial
dataset. Table 5.1 shows the initial training set and test set class distributions as well as the
class distribution of the reworked (redistributed). We notice that the "Wild Oat" class is not

Species Training set distribution Test set distribution Reworked distribution
Smartweed 0.03 0.14 0.04

Yellow Foxtail 0.10 0.22 0.11

Barnyard Grass  0.25 0.12 0.23

Wild Buckwheat 0.12 0.14 0.12

Canola 0.19 0.14 0.19

Canada Thistle  0.14 0.14 0.14

Dandelion 0.14 0.10 0.13

Wild Oat 0.03 0 0.03

Total 1 1 1

TABLE 5.1: Training set, test set and reworked distributions of the 8 species in the
dataset.

even present in the test set and that the "Smartweed" and "Yellow Foxtail" classes are the most
represented classes in the test set, and the least represented ones in the training set. Figure
5.4.(a) shows the size distribution of the "Canola" class in the training set and the test set
whereas Figure 5.4.(b) shows the size distribution of the "Canola" class in the reworked dataset.
We notice that the size distribution of the "Canola" class in the training set is widely different
from the test set and that the reworked dataset ensures that every size is present with the same
proportion in the training set and the test set.

0.10
0.175 HEl Training set
0.150 Bl Test set 0.08
<0.125 c
8 20.06
>0.100 >
=] 2
©0.075 ©0.04
[a] a
0.050
0.02
0.025
0.000 500 750 1000 1250 1500 1750 2000 0.00 500 750 1000 1250 1500 1750 2000
Image height Image height
(a) Training set and test set distribution. (b) Reworked dataset distribution.

FIGURE 5.4: Size distributions for the "Canola" class in the training set, the test set and
the reworked dataset.

These factors, as well as the aforementioned ones, explain why the baseline model failed to
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accurately determine the species of the images it processed. Nevertheless, after reworking the
dataset, the baseline model achieved an accuracy of 95.1%. Although this was a noticeable
improvement, there was still room to achieve better accuracy with further preprocessing. One
of which is to modify the bias initialization of the classifier’s last layer to take into account the
inherent data imbalance. Since the last layer uses a softmax activation function, we need to
solve the following system of equations:

ebr

VE € [L,N], pp = —0— )
[[ ]]pk 27];\;16171_

where N is the number of classes, p; is the presence of class k in the dataset, and by, is the bias
in the neuron k that will predict the probability of an image to belong to class k. This system is

b;—by,

linear in e’ and is easily solvable by noticing that Pi _ e . This bias modification improved

the accuracy of the baseline model by 1.58% Whichp’;eached 96.68% accuracy. Consequently, we
created 6 different versions of the same dataset. The first three versions are produced by the
VOTCSW method with the following parameters ,,;, = 0.1, Qe = 0.9 and M = 9. These
parameters impose that we shrink the images whose height is greater than 973 to 973. This value
was determined using Eq. (5.11) for H,,;, = 418 which represents the lowest size present in the
dataset. The difference between the first three versions produced by the VOTCSW method is the
sliding patterns which are horizontal (refer to Eq. (5.12)), vertical and spiral, respectively. The
images were all transformed to 3D tensors of size 348 x 348 X 9, meaning that they are equivalent
to videos of size 348 x 348 containing 9 frames. The fourth version and fifth version of the dataset
consist in resizing the images to a size that is equivalent, in terms of the number of samples, to
the size of the "videos" generated by the VOTCSW method. This size is /348 x 348 x 9 = 1044
and the images that are larger than 1044 are shrinked to 1044 whereas the ones that are smaller
than 1044 are zero-padded to that size in the fourth version, and magnified to that size in the
fiftth version. The sixth version of the dataset consists in shrinking all the images to a size of
224 x 224 which is suitable for using well-known architectures such as ResNet or Inception.
The 6 versions of the dataset are referred to as WSISCMC-H, WSISCMC-V, WSISCMC-S,
WSISCMC-1044P, WSISCMC-1044M, and WSISCMC-224 following the order in which they

were introduced above.

5.4.2 Model development

After performing the preprocessing described above, we created multiple variations for each
kind of model. All the networks used share in common a 3 x 3 (3 x 3 x 3 for 3D) filter mask
size for the convolution layers, an initial layer composed of 32 neurons, a last feature extraction
layer composed of 64 neurons, the use of ReLLU [32] as activation function, the shape of the

output of their feature extractor which is 576 features and their densely connected layers which
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are composed of 2 layers, one containing 128 neurons, followed by one containing 8 neurons
corresponding to the 8 classes of the dataset with a softmax activation. For each dataset
version, there is a predetermined depth for the networks created as shown in Figure 5.5. We
performed a grid search on the number of neurons for the 4 penultimate feature extraction
layers of every 2D network with 10-fold cross validation and we ensure that the validation set
always has the same class distribution and size distribution as the train set. The possible values
used for the number of neurons in these layers were 16, 32 and 64 to keep the experiments
feasible to be completed in a reasonable amount of time. The layers that were not searched
were composed of 64 neurons by default. This search allowed us to select the best architecture
among 81 variations for each of the 3 2D dataset versions, WSISCMC-224, WSISCMC-1044P

and WSISCMC-1044M.

WSISCMC-
224

2D Convolution + 2D
Max Pooling with a
factor of 2

X5

WSISCMC- WeISCHIC-
1044P, HvS
1044M s

2D Convolution + 2D
Max Pooling with a
factor of 2

X7

3D Convolution + 2D
Max Pooling with a
factor of 2

X4

2D Convolution + 2D
Max Pooling with a
factor of 2

2D Convolution X2

2D Convolution

D Convolution with 2x2
filter mask

Flatten

576
features

Flatten

576
features

Flatten

576
features

FIGURE 5.5: Network architecture for each version of the WSISCMC dataset.

Following that, for each 2D version of the dataset, a network was created and trained with
the best determined architecture 10 times with different initial weights and evaluated on its
corresponding test set such that only the best one is chosen. Then, the 2DCNN architecture
of the best network among the one trained on the WSISCMC-1044P and the one trained on
the WSISCMC-1044M was chosen to create a SDCNN architecture that has the same number
of parameters as the chosen architecture. This is to ensure a fair evaluation of the effect of
the VOTCSW method on the performance of the 3DCNN. Indeed, if a 3DCNN with more
parameters than a 2DCNN trained on WSISCMC-1044P or WSISCMC-1044M achieves better
results than the 2DCNN;, then this might be due to the difference in the number of parameters,
and not the difference in data representation. Since 2DCNNs and 3DCNNs perform the same
fundamental operation, if both have the same number of parameters and one of them performs
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better than the other, then this is most likely due to the difference in data representation.
Naturally, the weight initialization also plays a role in this difference in performance, therefore,
we always train the same network 10 times with different initial weights and choose the one that
achieves the best accuracy on the test set. The architecture of the 3DCNN that is calculated
from the best 2DCNN architecture has to be consistent with the above description in the sense
that the initial layer contains 32 neurons, and the last feature extraction layer contains 64
neurons. We assume that all the inner layers of the 3DCNN have the same number of neurons
N. If we denote the number of parameters of the feature extractor of the best network trained
on WSISCMC-1044P or WSISCMC-1044M by Nig44, the receptive field of the 3D convolution
layers by R3 (27 in this case), and the receptive field of the 2D convolution layers by Rs (9 in
this case), then the number of neurons N of each inner layer of the 3DCNN is determined by

the following equation:

3 x 32 x R34+ 32R3N + 2R5N? + RyN? + 64RyN + 32 4 64 + 4N = Nygua,

which is equivalent to

(2R3 + Ry)N? 4+ 4(8R3 + 16 Ry + 1)N + 96(R3 + 1) — Nyggs = 0. (5.13)

This second degree equation with unknown N has a unique positive solution because 96(R3 +
1) — Nip44 is negative and the other coefficients are positive. Since N has to be an integer, the
determined solution is rounded before it is used.

The resulting architecture was then used to create and train 3DCNNs on WSISCMC-H, WSISCMC—
V and WSISCMC-S. The best 3DCNN network and the best 2DCNN network were then se-
lected to be extended to NDPNNs. Consequently, each convolution layer of each network was
changed to an NDPNN layer with a degree 7, such that a 2DPNN and a 3DPNN were trained
and evaluated on their proper respective datasets. Finally, both of them were reduced using the
layer-wise degree reduction heuristic described in Algorithm 1 with 0 tolerance to gain computa-
tional efficiency and reduce memory usage without sacrificing their accuracy. We also fine-tuned
a ResNetb0V2, an InceptionV3 and a Xception network on the WSISCMC-224 dataset. These
networks were also trained from scratch and only the best among the fine-tuned and the custom
network of each model was selected for evaluation. Every model was trained with the Adam
optimizer [57], a batch size of 128 and a learning rate of 1072 for 100 epochs.

5.4.3 Results and discussion

The grid search determined that, for all the networks, 64 neurons in every layer (except the
first) produces the best average results. The number of neurons for the 3DCNN layers was
therefore determined to be 53 according to Eq. (5.13) with Njgy = 257408 which corresponds



Chapter 5. Plant Species Recognition with Optimized 3DPNN and Variably Overlapping
Time—Coherent Sliding Window

90

to the number of parameters of the feature extractor of the 2DCNN-1044P and the 2DCNN-
1044M. Furthermore, ResNet50V2, InceptionV3 and Xception failed to produce decent results
when they were trained from scratch. Therefore, only the fine-tuned networks were considered.
Table 5.2 shows the best test accuracy, aggregated precision, aggregated recall, aggregated F1
score, the average inference time per sample and the number of trainable parameters of every
model described above. The experiments show that the best 2DCNN model is the one trained
on WSISCM(C—-224, and the best 3DCNN is the one trained with the vertical sliding pattern.
Therefore, they were chosen to be extended to NDPNNs and the 2DPNN achieved a 99.48%
accuracy while the 3DPNN achieved a state-of-the-art 99.58% accuracy. Their execution times
and the number of trainable parameters were measured after the polynomial degree reduction
described in Algorithm 1 which determined that the first two layers of the 2DPNN could be
reduced to a degree of 7 and 2 respectively while the remaining ones could be reduced to 1
which represents 4.67 times less parameters, and that the first three layers of the SDPNN could
be reduced to 6, 2 and 2 respectively, while the remaining ones could be reduced to 1 which
represents 4.01 times less parameters. The results also show that ResNetb0V2, InceptionV3
and Xception failed to match the performance of the 2DPNN and the 3DPNN despite having
more than 30 times the number of parameters. Furthermore, even though the accuracy of the
3DPNN is unmatched, the data generated by the VOTCSW method came with an increase in
the spatio-temporal complexity of the model as it runs 3.28 times slower than its 2D counterpart,
and has 1.75 times more parameters. However, both 2DCNN-1044P and 2DCNN-1044M did
not provide satisfactory results compared to the 3DCNN models that run faster and have less
parameters, which tends to show that the 3D representation created with the VOTCSW method
is better than padding, magnifying and shrinking. Moreover, the 3DCNN models achieve better
performance overall than the 2DCNN-224 model but they have more parameters and run slower
than the 2DCNN-224 model which suggests that the VOTCSW method comes with the cost of
slightly heavier but better models.

An analysis of the generalization behavior of the networks shows that the SDCNN-V model
learns to generalize faster than the equally complex 2DCNN-1044M model and the 2DCNN-224
model as represented in Figure 5.6.(a). Furthermore, a more stable convergence is observed for
the 3DCNN-V model which may be explained by the fact that the oversampling inherent to
the VOTCSW method (refer to Proposition 5.3.5) has a regularization effect that smoothes the
weight updates and enables a steadier training with a potential reduction of overfitting. These
effects are also observed in the convergence of the NDPNN models represented in Figure 5.6.(b)
where there is a clear gap between the convergence speed and stability of the SDPNN-V and
that of the 2DPNN-224. A further analysis of the performance of the SDPNN-V model shows
that it was able to encapsulate enough information to perfectly recognize the least represented
class in the dataset which is "Wild Oat" as shown in Table 5.3 outlining the confusion matrix of

the 3DPNN-V model. Since only 17 images were wrongly classified, an in-depth investigation
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Model Accuracy Precision Recall F1 Score Inference time (ms) Parameters
2DCNN-224 98.15 98.2 98.08 98.14 4.7 241,992
2DCNN-1044P  97.8 97.83 97.78 978 14.49 332,296
2DCNN-1044M  98.03 97.96 98.11  98.03 14.73 332,296
3DCNN-H 98.28 98.37 98.16  98.26 14.26 331,075
3DCNN-V 98.43 98.64 98.3 98.46 14.15 331,075
3DCNN-S 98.28 98.37 98.16  98.26 14.31 331,075
2DPNN-224 99.48 99.53 99.33  99.42 4.98 265,608
3DPNN-V 99.58 99.69 99.36 99.52 16.34 465,670
ResNet50V2 98.25 98.17 98.28  98.22 28 23,581,192
InceptionV3 97.78 97.64 97.83 97.73 38 21,819,176
Xception 97.9 97.85 98.03 97.93 31 21,819,176

TABLE 5.2: Accuracy, precision, recall, F1 score, inference time and number of trainable
parameters of all the models trained on the reworked WSISCMC dataset. Bold values
represent the highest value in their respective column.
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(a) CNNs accuracy over time. (b) NDPNNSs accuracy over time.

FIGURE 5.6: Evolution of the networks’ test accuracies per epoch.

was performed. This investigation revealed that 10 images were showing a blue background as
illustrated in Figure 5.7.(a) and that 3 images were containing multiple plants in one image
as shown in Figure 5.7.(b). Moreover, upon further investigation, it was determined that the
3DPNN-V model correctly recognizes one of the plants present in all of the 3 multiple-plant im-
ages. Therefore, we can consider that the model is only wrong on 4 images since the problematic

images contradict the task of single plant classification by either showing no plant or multiple

4004 — 17
A It, the 3DPNN-V model achieved ffecti f——-——— =999
ones. As aresult, the model achieved an effective accuracy of 7--7— 17+ 4 %

when we removed the aberrant samples from the test set.
We now investigate the reason why the VOTCSW method enables the creation of a model that
generalizes better than one trained on resized images aside from its regularization-like behav-

ior. The intuition behind the improved generalization comes from the fact that the VOTCSW
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Actual-Predicted Canola Dandelion Canada Thistle Wild Oat Wild Buckwheat Smartweed Barnyard Grass Yellow Foxtail

Canola 752 1 1 0 1 0 0 0
Dandelion 0 540 0 0 0 0 0 0
Canada Thistle 0 0 545 0 0 0 0 0
Wild Oat 0 0 0 126 0 0 0 0
Wild Buckwheat 0 1 0 0 488 0 1 0
Smartweed 0 1 1 0 0 145 2 0
Barnyard Grass 1 0 0 0 0 0 939 0
Yellow Foxtail 0 1 1 0 0 0 5 452

TABLE 5.3: Confusion matrix of the 3DPNN-V model.

(a) Empty image. (b) Multiple plants in one image.

F1cURE 5.7: Examples of images wrongly classified by the 3DPNN-V model.

method enables the model using a 3D convolution kernel to have a larger effective field of view
than a 2D convolution kernel as illustrated in Figure 5.8 where the white squares represents a
3 x 3 convolution kernels, and the red, green and black dashed squares represent 3 consecutive
overlapping windows generated by the VOTCSW method. The VOTCSW convolution kernel
has three times more parameters and is more spatially dilated which enables it to take into
account three distinct informative areas that may be distant such as leaves. Hence, this helps
in creating "spatially aware" models that can, not only achieve what regular 2D convolution

models already do, but also establish a map of more complex spatial features.

5.5 Chapter Summary

In this chapter, we used 2DPNNs and 3DPNNs to tackle the problem of plant species recog-
nition on the WSISCMC dataset which contains plant images with variable size. We therefore
formally developed the VOTCSW method which transforms any image from the dataset to a
3D representation with fixed size that is suitable for 3DCNNs and 3DPNNs. Furthermore, we
designed a model development framework that makes use of the NDPNN layer-wise degree re-
duction heuristic and the VOTCSW to create a highly reliable NDPNN architecture for plant

species recognition. Moreover, we resampled the dataset with respect to the class distribution
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(a) Regular 2D convolution kernel. ~ (b) VOTCSW 3D convolution kernel.

F1GURE 5.8: Comparison between a regular 2D convolution kernel and VOTCSW 3D
convolution kernel.

and the size distribution to make it more suitable for machine learning models. In addition, we
evaluated the gain of using the VOTCSW method and we fine-tuned complex architectures such
as ResNetV2, InceptionV3 and Xception. We also showed that the SDPNN used in conjunction
with the VOTCSW method and the NDPNN layer-wise degree reduction outperformed all the
considered models and achieved a state-of-the-art 99.9% accuracy on the WSISCMC dataset
after determining the existence of aberrant samples in the dataset.
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Chapter 6

Conclusions and Future Work

In this thesis, we developed a novel deep learning model called NDPNN in an attempt to solve
complex problems more efficiently than the NDCNN model by encapsulating more non-linearity.
We began by formalizing the 1D version of the NDPNN and we derived the forward and back-
ward propagation equations that govern its learning process. Following that, we theoretically
analyzed the computational complexity of the 1IDPNN with respect to that of the IDCNN and
we empirically showed the linearization of the IDPNN computational complexity with a GPU
implementation. We then developed a theorem that enables the transformation of a 1IDPNN to
a IDCNN with the same number of parameters. Consequently, we derived 3 comparison strate-
gies to estimate fairly the gain of using IDPNNs over 1IDCNNs and we evaluated the 1IDPNN’s
performance with respect to that of the IDCNN on two classification problems and one regres-
sion problem related to audio signals. We also tested various activation functions to estimate
their influence on the 1IDPNN. As a result, we determined that the IDPNN could encapsulate
more information with less spatio-temporal complexity than a 1IDCNN on the audio processing
problems that were considered. Furthermore, we empirically determined that the IDPNN had
an affinity for bounded activation functions which ensured a stable convergence. Following that,
we showed that the forward and backward propagation equations were invariant with respect
to the dimension of the signal and we generalized 1IDPNNs to NDPNNs. Consequently, we
formally developed a general polynomial degree reduction formula which we used to design a
heuristic algorithm that reduces the degrees of the layers of a pre-trained NDPNN which makes
it lighter and faster while maintaining its performance on the dataset it was trained on. Then,
we considered the problem of plants species recognition on the WSISCMC dataset created by
the EAGL-I system [107] and for which we developed the VOTCSW method. The experi-
ments conducted on the WSISCMC dataset demonstrate that the VOTCSW method coupled
with 3DPNNs outperform fine-tuned ResNetV2, InceptionV3 and Xception with far less spatio-
temporal complexity and achieve a 99.9% state-of-the-art accuracy. This confirms the intuition
proposed by Mehdipour Ghazi et al. [113] who states that models with simpler architectures
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have the tendency to better learn from scratch than complex architectures. Moreover, we de-
termined that the NDPNN layer-wise degree reduction heuristic would be able to significantly
compress a pre-trained NDPNN without altering its performance on the test set, which makes
it a necessary postprocessing tool that has to be used in conjunction with NDPNNs. Further-
more, we also demonstrated that the VOTCSW method offers a better alternative than resizing
when using the WSISCMC dataset which contains images with variable sizes and that the 3D
representation it creates is more informative than a resized 2D representation. In addition, we
discovered that the current publicly available WSISCMC dataset can not be used with machine
learning models without a mandatory preprocessing consisting in redistributing the samples of
each class by occurrence and size to create a test set that has the same distribution as the
training set. Besides, we also discovered that there were aberrant samples in the dataset which
contradict the fact that the dataset should only contain single-plant images. However, despite
these minor issues, we can safely declare that the EAGL-I system has the potential to produce
highly relevant massive datasets, provided that the authors impose a stricter control on the
data acquisition process and ensure that classes are balanced.

6.1 Discussion

Our experiments are not sufficient to claim that our proposed NDPNN surpasses NDCNN
on all class of complex classification and regression problems. In addition, there is still no
mathematical proof that the NDPNN is a convergent model. Moreover, the stability of the
model is not ensured as stacked layers with high degrees can lead to the model becoming
unstable, thus, losing its generalization capability. Therefore, there is also a need to estimate
an upper bound limit for the degree of each layer so that the overall network stably learns
from the given data. Furthermore, due to computational limits, the model could not be tested
with deep topologies that are used to solve very complex classification and regression problems
involving a huge amount of data. Also, despite its effectiveness, the NDPNN layer-wise degree
reduction heuristic was only applied after the training of an NDPNN was completed. This is
the most time consuming process and the most risky — in terms of stability — as IDPNNs were
proven to show some instability when trained with unbounded activation functions and this
instability is expected to be observed on 2DPNNs and 3DPNNs. The instability can potentially
be reduced by lowering the degree of each layer of the model either before or during training (
hence the potential to use this heuristic in the model validation process) instead of after a model
is trained. Furthermore, the heuristic is based on determining the smallest symmetric interval
that contains the values of a given layer’s output regardless of the channel /neuron. This implies
that some polynomials are over-reduced, meaning that they are reduced on a bigger interval
than the one they produce their output from. A potential solution to this is to determine the

smallest symmetric interval that contains the values of a given neuron’s output to produce a finer
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and more accurate reduction. As for the VOTCSW method, although it enabled the creation of
highly accurate models on the WSISCMC dataset, there is not enough evidence to claim that
it can improve the results on any dataset that contains images with variable size. Additionally,
the increase in model performance may not always justify the size and parameter overhead that
it introduces compared to simply shrinking images for applications that are memory bound.

Hmaz
Besides, there is no clear indication on how to determine the minimum ratio — or the
min

adequate parameters M, Qin, Qmaee and h that can maximize the performance of a model on a
given dataset.

6.2 Future Work

Future work may be done on demonstrating the conditions of the stability of the model as well
as its convergence. In addition, a more specific gradient descent optimization scheme may be
developed to avoid gradient explosion. Moreover, deeper NDPNN topologies can be created to
compete with state-of-the-art models on any multimedia processing related problem. Further-
more, we will focus on applying the VOTCSW method on bigger and more varied datasets in
order to determine if the performance improvement that it introduces to models has any sta-
tistical significance. We will also aim to determine how the choice of the VOTCSW parameters
influence the performance of the trained models, with an emphasis on creating a more dataset-
specific set of rules for the method’s use. We also plan on exploiting the NDPNN layer-wise
degree reduction heuristic for validating models before training, which can be a safer alternative
to the one it was used in this thesis. In addition, we intend to apply the polynomial reduction
on the neuronal level in order to obtain more stable and accurate polynomials than the ones
obtained with the layer-wise reduction, which may enable the degree of a layer to be further
reduced. Finally, more thorough experiments and further mathematical analysis can help the
NDPNN model to thrive and find its place as a standard model in the deep learning field.
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