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ABSTRACT

COVID-19 is an unprecedented health crisis causing a great deal of stress and
mental health challenges in populations in Canada. Recently, research is emerging

highlighting the potential of cannabinoids’ beneficial effects related to anxiety,
mood, and sleep disorders as well as pointing to an increased use of medicinal

cannabis since COVID-19 was declared a pandemic. Furthermore, evidence points
to a correlation between mental health and sleep patterns. The objective of this

research is threefold: i) to assess the relationship of the clinical delivery of
cannabinoid medicine, by utilizing machine learning, to anxiety, depression and
sleep scores; ii) to discover patterns based on patient features such as specific

cannabis recommendations, diagnosis information, decreasing/increasing levels of
clinical assessment tools (GAD7, PHQ9 and PSQI) scores over a period of time
(including during the COVID timeline); and iii) to predict whether new patients

could potentially experience either an increase or decrease in clinical assessment tool
scores. The dataset for this thesis was derived from patient visits to Ekosi Health
Centres in Manitoba, Canada and Ontario, Canada from January, 2019 to April,

2021. Extensive pre-processing and feature engineering was performed. To
determine the outcome of a patients treatment, a class feature (Worse, Better, or

No Change) indicative of their progress or lack thereof due to the treatment
received was introduced. Three well-known supervised machine learning models

(tree-based, rule-based and nearest neighbour) were trained on the patient dataset.
In addition, seven rough and rough-fuzzy hybrid methods were also trained on the

same dataset. All experiments were conducted using a 10-fold CV method.
Sensitivity and specificity measures were higher in all classes with rough and

rough-fuzzy hybrid methods. The highest accuracy of 99.15% was obtained using
the rule-based rough-set learning method.
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Chapter 1

Introduction

COVID-19 is an unprecedented health crisis causing a great deal of stress and sleep
challenges for populations in Canada. Research is emerging highlighting the

potential of cannabinoids’ beneficial effects related to chronic pain [2], substance
use [3], addiction [4] and poor mental health [5, 6]. Recent studies point to the

clinically significant acute impacts the pandemic is having on insomnia rates [7].
Where there is recent research which points to the potential positive impact

cannabinoid may have regarding sleep [8, 9], a 2017 review [10] of the literature on
cannabinoid, cannabinoids and sleep suggested mixed results and highlighted the

need for further research.
With the availability of large amounts of patient data, machine learning (ML)
techniques, specifically, supervised and deep learning classifiers, have made it

possible to detect, diagnose and treat mental health disorders. Common dataset
formats include: Electronic health records (EHR) [11], Social Media (e.g., twitter,
Reddit) [12, 13], Image (e.g., MRI) [14] and Audio [15]. [16], present an in-depth

review of about 300 papers related to ML and its application in mental health. The
most common ML methods used include: support vector machines, decision trees,

naive bayes, k-nearest neighbour, and neural networks (deep learning). Latent
Dirichlet allocation (LDA) and sentiment analysis methods were used for learning
from textual and social media data. Predicting mental health from social media
data is an interdisciplinary area also known as human-centric machine learning
where human insights are combined with data driven predictions [17]. Ethical

tensions in inferring mental health states of individuals from social media data are
discussed in [18]. In another study [19], Twitter data was used in public health in

surveillance, detection, and prevention of events. In [20] XGboost classifier was used
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to assess the effectiveness of biomarkers to classify depression cases from healthy
cases using a large dataset from Netherlands. In a recent study [21], ML methods

were used to assess whether the adolescents with depressive symptoms had access to
treatments and, if yes, where the treatments were received. [22] proposed an

ensemble of six classifiers to predict general anxiety disorder (GAD) and major
depressive disorder (MDD) problems. [23] discuss application of Natural Language

Processing techniques to EHR phenotyping (unstructured text) which contain
narrative text such as physician notes for improving mental health services. [24]
present a survey of papers on mental health detection using ML techniques in
Online Social Networks. A review of 2,261 articles on the application of deep

learning methods in mental health outcomes was presented in [25]. In this thesis,
various deep neural network architectures as well as different forms of clinical data

(neuroimages, EMR, audio visual and social media) are discussed.
Since 1991, rough set theory has been applied extensively in medical

applications [26, 27]. To the best of our knowledge, there are only a few papers
related to the application of rough sets in mental health. In [28], rough set theory

was used to explore the relationship between human psychological state (scores of a
psychological scale) and physiological state (level of the secretory biomarkers).

In [29], the authors use rough sets instead of conventional linear correlation analysis
for mining the relationship between a subjective stress scale and salivary cortisol

stress biomarker. In [30], a hybrid rough set and Taguchi-genetic algorithm
(RS-HTGA) was proposed to determine the relationship between mental stress and

biomedical signals. The efficacy of their method was tested on a clinical dataset
comprising 362 cases (196 male, 166 female). In [31], the RS-HTGA algorithm

achieved sensitivity, specificity, and precision scores of 96%. In [32], the authors
present an application of rough sets for attribute reduction to identify depressive

episodes.
In this thesis, we seek i) to evaluate the relationship of the clinical delivery of

cannabinoid medicine for anxiety, depression and sleep scores by utilizing machine
learning; ii) to discover patterns based on patient features such as specific

cannabinoid recommendations, diagnosis information, decreasing/increasing levels of
clinical assessment tools (GAD7, PHQ9 and PSQI) scores over a period of time
(including during the COVID timeline); and iii) to predict whether new patients

could potentially experience either an increase or decrease in clinical assessment tool
scores. The dataset for this study was derived from patient visits to Ekosi Health
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Centres in Manitoba and Ontario, Canada from January, 2019 to April, 2021.
Extensive pre-processing and feature engineering was performed on the dataset. To
determine the outcome of a patients treatment, a class feature (Worse, Better, or

NoChange) indicative of their progress or lack thereof due to the treatment received
was introduced. A two-class experiment (Worse or Better) was also explored.
Well-known supervised machine learning classification algorithms (tree-based,

rule-based, and nearest neighbour) in addition to rough and fuzzy methods were
trained on the patient dataset. All experiments were conducted using a 10-fold CV
stratified method. Also, prediction of new cases using the rough set-based classifier

(LEM2 method) is presented.
The results demonstrate that rough-set based classifier (with LEM2) is superior to

all other tested methods in terms of overall classification accuracy, accuracy per
class, sensitivity, and specificity values for both the 2-class and the 3-class

experiments. A statistical t-test reveals that there is a difference between rough-set
based classifier and other tested classifiers for the 3-class experiment. The

contribution of this thesis is a novel application of rough and fuzzy classification
learning to a case study involving cannabinoid medicine and anxiety, depression,

and sleep pattern data [33].

1.1 Thesis Layout

The rest of this thesis organized as follows:

Chapter 2 provides an overview of applications of machine learning techniques in
mental health

Chapter 3 provides a theoretical framework for granular computing algorithms

Chapter 4 explains the Ekosi Health Center dataset used as a case study in this
thesis and provide details about features

Chapter 5 gives experiments conducted on the medical data set with various algo-
rithms followed by a discussion of the results

Chapter 6 concludes the thesis and provides future research directions
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Chapter 2

Related Work-ML in Mental
Health

2.1 Overview

In this section, we will review some machine learning classifiers applied on different
types of mental health data. In [16], the authors present an in-depth review of 300

papers related to machine learning and its application in mental health. The review
includes common mental health conditions such as Alzheimer’s disease, depression

and schizophrenia. The most common ML methods used were support vector
machines, decision trees, naive bayes, k-nearest neighbour and neural networks

(deep learning). Latent Dirichlet allocation (LDA) and sentiment analysis methods
were used for learning from textual and social media data. Most of the articles focus
on detection and diagnosis of mental health in individual patients. There were fewer

papers in the domain of public health, treatment and support, as well as research
and clinical administration [16].

Social media is a large source of human data that provides information about
peoples thoughts, feelings, moods, and experiences. Predicting mental health from
social media data is an interdisciplinary area also known as human-centric machine
learning where human insights are combined with data driven predictions [17]. The

authors identify five discourses (patient/disorder, social media, scientific,
data/machine learning, person) in 55 papers using a search criteria of 164 terms.
The paper discusses the challenges in making a case study as each discourse can

happen in other contexts as well. Ethical tensions in inferring mental health states
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of individuals from social media data are discussed in [18]. In another study [19],
twitter data was used in public health in surveillance, detection and prevention of

events.
A review of 2,261 articles on the application of deep learning methods in mental
health outcomes is presented in [25]. In this paper, various deep neural network

architectures as well as different forms of clinical data (neuroimages, EMR, genetic,
audio visual and social media) are discussed. In [34], the authors present a review of

54 papers covering effective systems involving the fusion of human computer
interaction (HCI), ML and mental health areas. In [35], the authors present a

survey of current state of ML applications in psychotherapy research consisting of
51 studies where text messages between patient and counselor, transcripts of

sessions, audio recordings, and patient self-reports were some of the data used for
training the ML models. The authors conclude that the size of data is an important
factor and suggest that the number of data points should be 10 times more than the

number of features.
In section 2.1.1, we discuss a few representative papers that use supervised learning,

followed by clustering and semi-supervised methods in section 2.1.2. We conclude
the chapter with deep learning methods in section 2.1.3.

2.1.1 Supervised Learning

In [36], Bayesian network was used to select important depression factors. Three
Bayesian classifiers were proposed taking into account various factors such as guilt,
dangerous behaviour, loss of interest, etc., to calculate the posterior probability and
predict the probability of suicide to find the optimum model and significant factors.
Prediction of risk of a child developing mental health symptoms as an adolescent is

another important issue to screen in order to prevent severe outcomes Certain
factors such as environment and personality can affect the classifier performance and
logistic regression is the most commonly used classifier to predict mental problems
in mid-adolescence [37]. In this study, random forest, XGBoost, neural networks

and SVM classifiers were used. The results demonstrate a very slight improvement
with random forest and SVM classifiers compared to the logistic regression classifier

using the area under the receiver operating characteristic (AUC) measure. In a
recent study [21], ML methods were used to assess whether adolescents with
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depressive symptoms had access to treatments and if yes, where the treatments were
received. Random forest regressor and linear regression (elastic nets) were used to
perform sensitivity analyses. Elastic nets outperformed random forests and out of

1,671 adolescents, 53.38% had access to treatment during a 12-month period.
In [20] XGboost classifier was used to assess the effectiveness of biomarkers to

classify depression cases from healthy cases using a large dataset from Netherlands.
The paper attempts to find an association between important biomarkers (features)
and depression in order to address the problem of patients not disclosing depressive

symptoms during a clinical interview.
In [11], features such as blood report, physical demographic, sleep history extracted
from electronic health records were used to detect obstructive sleep apnea disorder
using an SVM classifier with 68.06% score for accuracy measure and 88.76% score

for sensitivity measure.
Authors of [22] proposed a novel machine learning pipeline containing 6 Classifiers
(XGBoost, Random Forest, Support Vector Machine, KNN and a neural network

tuned using Bayesian hyperparameter optimization) to predict general anxiety
disorder (GAD) and major depressive disorder (MDD) problems. 59 features from
electronic health records of students were used. The most predictive features for

MDD were, satisfaction of living conditions and having public health insurance. The
top effective features for GAD were, vaccinations being up to date and marijuana

use.

2.1.2 Other methods

In [38] three clustering methods (k-means, agglomerative hierarchical and
K-mediods) were first used to label the target population as mentally distressed,
neutral, and happy. Clustering results were validated using mean opinion score.

Seven well-known classifiers were used with SVM, k-nearest neighbour and random
forest classifiers giving the best result (90% accuracy).

In [12], a semi-supervised method was used to classify patients into 4 categories
(anxiety, depression, bipolar, and ADHD) based on social media posts on the Reddit
website. Co-training method using Random Forest, Support Vector Machines and

Naive Bayes classifiers resulted in better performance. First, a small labelled
dataset was used to train weak classifiers. Next, these classifiers were used in an
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iterative manner to generate labelled examples from a larger unlabelled dataset.

2.1.3 Deep Learning

In [39], multilayer feedforward deep neural network was applied to unstructured text
notes in EMRs consisting of 861 documents related to 366 patients over a period of

six months. The study in youth depression was meant to phenotype potential
participants for research recruitment. Brute Force method was used to to label the
documents as positive (inclusion criteria) or negative (exclusion criteria). 3 deep

models were trained on the labelled documents using TF-IDF vectorization.
In [40], Long Short-Term Memory (LSTM) was used to predict the risk of future

depressive episodes and intervention recommendation from illness trajectories
(including time-series data) extracted from EMRs. Mental health and diabetes
cohorts were used as case studies. For baseline comparison, SVM and Random

Forests were used on non-temporal features.
In [14], the authors present a survey of popular deep learning methods such as

convolutional neural networks, belief networks, recurrent networks, probabilistic
networks to detect neurological disorders (Parkinson’s, Alzheimer’s and

schizophrenia) using magnetic resonance imaging (MRI) datasets. The review
concludes that the CNN model outperforms other deep learning methods.

In [41], Three-dimensional convolutional neural networks (3D-CNNs) were applied
using magnetic resonance imaging data for diagnosing patients with Alzheimers
disease. Three different CNN models (both 2D and 3D) were trained to generate

feature maps. Two different classifiers were incorporated (softmax and SVM) with
3D-CNN-SVM giving the best result.

2.1.4 Clinical Datasets: Types and summary list of related
papers

Fig. 2.1 shows the different forms of clinical data sets used in many of the surveys.
The following tables give a summary list of reviewed papers grouped by the type of

clinical dataset used in various mental health studies.
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Figure 2.1: Clinical data sets

Table 2.1: EHR as dataset - related papers

Improving diagnosis of depression with XGBOOST machine learning model and a large biomarkers Dutch dataset [20]
Towards Validating the Effectiveness of Obstructive Sleep Apnea Classification from Electronic Health Records Using Machine Learning [11]
Predicting mental health treatment access among adolescents with elevated depressive symptoms: Machine learning approaches [22]
Predicting healthcare trajectories from medical records: A deep learning approach [40]
Applying deep neural networks to unstructured text notes in electronic medical records for phenotyping youth depression [39]
The use of electronic health records for psychiatric phenotyping and genomics [42]
A machine learning approach to modeling PTSD and difficulties in emotion regulation [43]
Predicting personalized process-outcome associations in psychotherapy using machine learning approachesA demonstration [44]

Table 2.2: Social media as dataset - related papers

A taxonomy of ethical tensions in inferring mental health states from social media [18]
Who is the" human" in human-centered machine learning: The case of predicting mental health from social media [17]

A scoping review of the use of Twitter for public health research [19]
A novel co-training-based approach for the classification of mental illnesses using social media posts [12]

Predicting social anxiety treatment outcome based on therapeutic email conversations [45]
Large-scale analysis of counseling conversations: An application of

natural language processing to mental health [46]

Table 2.3: Images as dataset - related papers

Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimers disease, Parkinsons disease and schizophrenia [14]
Application of machine learning to structural connectome to predict symptom reduction in depressed adolescents with cognitive behavioral therapy [47]

Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis [48]
Individualized treatment response prediction of dialectical behavior therapy for borderline personality disorder using multimodal magnetic resonance imaging [49]

Deep learning based diagnosis of Parkinsons disease using convolutional neural network [50]

Table 2.4: Audio as dataset - related papers

A technology prototype system for rating therapist empathy from audio recordings in addiction counseling [15]
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Chapter 3

Data Preparation

3.1 Overview

The original dataset includes 541 unique patients and 32,514 records (for single and
multiple visits). In this thesis, patients with at least two different dates of a medical
appointment with one of the Health Centres were considered (referred to as multiple

visit dataset). The ages for youngest and oldest patients were 6 and 108 years
respectively (with a mean value of 58.61). Additionally, this multiple dataset

included 390 types of diagnoses with 75 unique cannabidiol formulations. After data
cleaning, diagnoses types that were not of interest in this study removed, the

multiple visit dataset was reduced to 354 patients from 375 patients.

• Patient Id : Since this feature uniquely identifies a patient, due to privacy
reasons, this feature value was anonymised by removing each patient’s name,
date of birth and any information that might reveal the patient’s identity.

• Age: This feature gives the age of the patient where the minimum value for age
is 6 and the maximum value is 108.

• Clinical Assessment Tool (CAT): This feature indicates the type of the clinical
measure assessment tool that was utilized to assess and score the patient. Three
specific CAT types were observed in this study; the GAD-7 (General Anxiety
Disorder 7), PHQ-9 (Patient Health Questionnaire 9), and PSQI (Pittsburgh
Sleep Quality Index).

• CAT Value : The feature gives the values for each of the CAT types: GAD-7,
PHQ-9, and PSQI.
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• CAT Observation Date: This feature gives the date on which a CAT value was
observed.

• Sex Id: This feature gives the gender and the distribution of the patients coded
as 1: male (34.2%) and 2: female (65.8%).

• Cannabinoid recommendation: This feature indicates the specific cannabinoid
recommendation. The medical cannabis products contain varying amounts of
cannabidiol (CBD) and tetrahydrocannabinol (THC), two phytocannabinoids
found in cannabinoid.

• Diagnosis: This feature indicates the diagnosis of the patient. There were 390
types of diagnoses and only 13 types were considered in this thesis.

The raw data had several problems such as missing or invalid values, continuous
values for dosage and similar diagnosis which required extensive preprocessing. In
the following section, we discuss the preprocessing steps applied to the dataset.

3.1.1 Preprocessing

The final dataset after preprocessing for experimentation was: 8,281 records (2,911
male and 5,730 female). The description of the steps are as follows:

• Invalid and missing values: Invalid and null values were found in gender and
CAT value features and were removed. For example, there were 114 records
that gender had a value other than 1 or 2. Also, in the original dataset, there
were 18 records that CAT value greater than 27. There were very few records
with missing values which were also removed.

• Diagnosis coding: The raw data consisted of 390 diagnoses categories. Some low
occurring or categories not relevant to this study were removed (E.g.: ADHD,
MS, Anemia, Vitiligo, Blood Clot, Schizophrenia, and Overweight). Other gran-
ular categories such as migraine, classical migraine, common migraine, chronic
migraine without aura were combined into the broader migraine category. In
this study, we were primarily interested in chronic pain, so patients with mi-
graine and headache were included in the chronic pain category.
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• Cannabinoid recommendation coding: The values for this feature were contin-
uous since they represent dosage values. Since we were only interested in a
broad class of values, these values were converted into integers using regular
expressions (using Python regular expression package).

• Multiple cannabinoid recommendations: Many patients (almost 40%) were rec-
ommended more than one cannabinoid product for one particular diagnosis in
a single visit. This was primarily for cannabinoid product classes CBD and
CBD AND THC:CBD. For such patients, the recommendation was changed
to CBD AND THC:CBD (category 3). This resulted in duplicate records and
these duplicate records were removed.

• Multiple CAT values: Some patients had a different value for GAD-7/PHQ-
9/PSQI during a single visit. For this feature, records with largest CAT value
(most severe) were recorded.

• Time of visit: All time values with a small difference during a single visit were
standardized and 21 patients had a slight time difference in at least one record.

• CAT value coding: This generated feature was designed to merge CAT value and
CAT types: A0-A3, D0-D4, and S0-S3 to represent anxiety (GAD-7), depression
(PHQ-9), and sleep disorder (PSQI) severity level respectively.

Table 3.1 provides scores/severity levels for each of the Clinical Assessment Tools
and their diagnostic status that was used for our experiments.



12

Table 3.1: Scores/severity levels for each CAT Value and their diagnostic status

CAT Type CAT Value Range(score) Diagnostic Status

GAD-7

0 - 4 Minimal Anxiety
5 - 9 Mild Anxiety
10 - 14 Moderate Anxiety
15 - 21 Severe Anxiety

PHQ-9

0 - 4 Minimal Depression
5 - 9 Mild Depression
10 - 14 Moderate Depression
15 - 19 Moderately Severe Depression
20 - 27 Severe Depression

PSQI

0 - 4 Good Sleep quality
5 - 9 Poor Sleep Quality
10 - 15 Bad Sleep Quality
16 - 20 Severely Bad Sleep Quality
21 Terrible Sleep Quality

One of the main objectives of this study was to detect patterns in the fluctuations of
values for GAD-7, PHQ-9 and PSQI (clinical assessment tools) for a patient during
a time period. Figure. 3.1 shows the number of patients from 2019 to 2021. As the
figure shows, the number of patients that visited the Centre was the highest (59)

during April 2020 which was also the start of the first wave of COVID. In particular,
we were interested in the overall outcome of a patients quality of life in terms of
whether their GAD-7/PHQ-9/PSQI scores were increasing/decreasing/constant

during the period of observation. In addition, this information had to be co-related
with their cannabinoid product recommendation and diagnosis.

Figure. 3.2 shows the trends in score values for a single patient at the peak of
COVID. It can be seen that in Figures. 3.2a and 3.2b there is no regular pattern for

GAD-7/PHQ-9/PSQI scores.

3.1.2 Engineered Feature - Patient Status

To determine the outcome of a patients treatment, we introduced a new feature
(status) indicative of their progress or lack thereof due to the treatment received

over a period of time. Three values for status were decided: Worse, Better, or
NoChange. An additional reason for introducing these labels was to train
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Figure 3.1: The number of patients distribution in each month

(a) GAD-7 (b) PHQ-9 (c) PSQI

Figure 3.2: The observed scores (CAT value) for one patient
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classification models so that these models can be used to determine (or predict) the
status of a new patient. Figure 3.3 provides the flowchart for computing the value of

this feature.

Figure 3.3: FlowChart - Patient Status Computation

The assumption behind this computation was that, since the score values for a
disorder type does not follow any trend (as shown in Fig. 3.2), a mean score value

would be representative of a patients score over the entire time period. In addition,
there were unequal scores recorded for each patient during a time period. This

problem was also observed for different disorder types as well. Hence, we separated
the data into different CAT types first and then performed the labelling. This

method also solved the problem of lack of observations of a CAT type with a time
period for any given patient.

(a) CBD (b) THC:CBD (c) THC (d) CBD and THC:CBD

Figure 3.4: Distribution of patients with their status, diagnosed with Depression

Figure 3.4, shows the distribution of patient records based on i) labelled patient’s
status (Worse, Better, NoChange) , ii) diagnosis (depression), and iii) CAT type for

the four different types of cannabinoid formulations: CBD, THC:CBD, THC and
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CBD AND THC:CBD. The distribution of patients for other diagnoses (ex: Sleep
Disorder, Chronic Pain, Arthritis, Anxiety) can be found in Figure 3.5, 3.6, 3.7,

3.8. However, chronic pain is the most frequent diagnosis and there were no patients
with sleep disorder diagnosis who were recommended THC formulation. The

distribution of diagnosis and cannabinoids product recommendation classes at the
beginning (before changing cannabinoids product recommendation and removing

duplicates) are given in Figures 3.9, 3.10 respectively.

(a) CBD (b) THC:CBD (c) CBD and THC:CBD

Figure 3.5: Distribution of patients with their status, diagnosed with Sleep Disorder

(a) CBD (b) THC:CBD (c) THC (d) CBD and THC:CBD

Figure 3.6: Distribution of patients with their status, diagnosed with Chronic Pain

(a) CBD (b) THC:CBD (c) THC (d) CBD and THC:CBD

Figure 3.7: Distribution of patients with their status, diagnosed with Arthritis
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Figures 3.5, 3.6, 3.7 and 3.8 show the distribution of patient records based on i)
labelled patient’s status (worse, better, noChange) , ii) diagnosis, and iii) CAT type

for the four different types of cannabinoids formulations: CBD, THC:CBD, THC
and CBD AND THC:CBD . Also, note in Fig. 3.5, there were no patients with

sleep disorder diagnosis who were recommended THC formulation.

(a) CBD (b) THC:CBD (c) THC (d) CBD AND THC:CBD

Figure 3.8: Distribution of patients with their status, diagnosed with Anxiety

Figure 3.9: The distribution of patient diagnosis classes before data cleaning
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Figure 3.10: The distribution of patient cannabinoids product recommendation
classes before data cleaning

Figure 3.11: The distribution of patient diagnosis classes after data cleaning
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Figure 3.12: The distribution of patient cannabinoids product recommendation
classes after data cleaning
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Chapter 4

Formal Models: Rough Sets and
Fuzzy Rough Sets

4.1 Preliminaries

In this section, we present a brief review of rough and fuzzy rough set theory
concepts that were used in this thesis. Specifically, we use different forms of fuzzy

and rough nearest neighbor classification algorithms.

4.1.1 Rough Sets

In classical set theory, we can classify whether elements either belong to a set or
not. This is a precise or crisp set where the sets have sharp boundaries. However,

when boundaries are unsharp or vague, it is difficult to classify elements uniquely to
one set. In other words, this will result in a boundary region with elements that

cannot be classified precisely. Rough set theory was proposed by Zdzislaw Pawlak in
early 80’s as a mathematical framework to analyze vague data and ill-defined

objects based on an indiscernibility or equivalence relation [51, 52]. Equivalence
relations generate equivalence classes and the notion of indiscernibility is defined

relative to a given set of attributes [27]. Due to the lack of knowledge (or
uncertainty) that objects might belong to more than one set (or class), two

approximation operators (lower and upper) are introduced in rough set theory to
generate precise sets. In supervised classification, the advantage of rough set theory

is that no prior or additional data is needed to categorize data into classes [26].
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Figure 4.1 shows the regions that emerge with rough set approximation. The lower
approximation consists of the objects that certainly belong to the set (orange

region) and upper approximation consists of objects that their membership is not
certain (green region). The regions are depicted as squares only for the sake of

illustration, but they can be of arbitrary shape. We should note that each granule
can contain an arbitrary number of objects or may be empty. The oval denotes the
target X which, in the case of supervised learning, is either a class or a pattern that

needs to be learned.
Let U be a finite, non-empty universe of objects and let R ⊆ U × U denote a binary
relation on the universe U . R is called an indiscernibility relation and for rough sets,
it has to be an equivalence relation. The pair (U,R) = A is an approximation space
A [53]. Let X ⊆ U be a target concept in this universe. Then the task is to create
an approximated representation for X in U with the help of R. Let [x]R denote the

indiscernibility class of x i.e. y ∈ [x]R ⇐⇒ (x, y) ∈ R. Then, every equivalence
class forms a granule or partition containing objects that are indiscernible for this

approximation space A. Therefore, every single item in a granule is considered
identical and inseparable. These granules are approximated by the following means:

• Lower approximation. Intuitively, these are the objects which certainly be-
long to X with respect to A.

LA(X) = {x ∈ U : [x]R ⊆ X}.

• Upper approximation. Intuitively, these are the objects which may belong
to X with respect to A.

UA(X) = {x ∈ U : [x]R ∩X ̸= ∅}.

These two approximations will also form the following two regions:

• Boundary region. These are the objects occurring in the upper approximation
but not in lower approximation of X.

BA(X) = UA(X)− LA(X).
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• Negative region. These are the objects that certainly don’t belong to X.

U − UA(X).

With this framework, we have two different types of sets: a set X is called a crisp
set if and only if BA(X) = ∅. Otherwise, it is called a rough set. The pair

(UA(X),LA(X)) forms the rough approximation for X (see Figure 4.1 for an
illustration).

4.2 Rough Sets: Upper and lower approximations

Figure 4.1 shows the regions that emerge with rough set approximation.

Universe 

�

Knowledge

Granule

Target 

Concept  

Lower 

Appx.

!"( )

Upper

Appx.

�"( )

Figure 4.1: Rough Sets: Upper and lower approximations [1]

Table 4.1 gives a sample patient data with three features (CAT type and value are
combined) and one decision feature for illustration.

We illustrate the lower and upper approximations in terms of sample patient data
presented in Table 4.1.

Example 1. Let X = {x1, x3, x6, x7, x8, x10} for decision Better.
Let [x]R = {x1, x2, x7, x3, x4, x6, x5, x8, x9, x10} and
A = {CAT type-value, Diagnosis, Cannabinoids recommendation}

LA(X) = {x1, x3, x8, x10}.



22

Table 4.1: Sample Patient Data Table

Sample CAT type/value Diagnosis Cannabinoids recommendation Status (decision)

x1 D2 (PHQ-9, 10-14) Hypertension CBD & THC: CBD Better
x2 A3 (GAD-7, 15-21) Chronic Pain CBD Worse
x3 S2 (PSQI, 10-15) Fatigue CBD & THC: CBD Better
x4 D3 (PHQ-9, 15-19) Sleep Disorder CBD & THC: CBD Worse
x5 A0 (GAD-7, 0-4) Sleep Disorder CBD & THC: CBD Worse
x6 D3 (PHQ-9, 15-19) Sleep Disorder CBD & THC: CBD Better
x7 A3 (GAD-7, 15-21) Chronic Pain CBD Better
x8 D2 (PHQ-9, 10-14) Anxiety THC: CBD Better
x9 A3 (GAD-7, 15-21) Depression CBD & THC: CBD Worse
x10 D0 (PHQ-9, 0-4) Hypertension CBD & THC: CBD Better
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UA(X) = {x1, x3, x4, x6, x2, x7, x8, x10}.

BA(X) = {x4, x6, x2, x7}.

4.2.1 Fuzzy Rough Sets

Fuzzy set theory was proposed by Lotfi Zadeh [54] as an extension of traditional set
theory to deal with uncertainty and vagueness. In the context of fuzzy sets, let X

denote the universe, a fuzzy set A ∈ X is characterized by a mapping X → [0, 1]

which is also called a membership function. A fuzzy relation R in X which is also a
fuzzy set and is characterized by a mapping R: X × X → [0, 1] [54]. [55, 56, 57],
introduced the idea of combining fuzzy and rough sets to develop soft similarity
classes i.e., fuzzifying the approximations of rough set theory. Formally, a fuzzy

rough set is a pair (A1, A2) ∈ (X,R) where A is a fuzzy set in X such that
R ↓ A = A1 and R ↑ A = A2 and R is a fuzzy relation in X [58]. Fuzzy rough sets

permit partial membership of an object to the lower and upper approximations and
the approximate nature of information are modeled by means of fuzzy

indiscernibility relations. In general, R can be considered as a fuzzy tolerance
relation such R(x, x) = 1 and R(x, y) = R(y, x) for all x, y in X. Let U be the

universe and R the fuzzy tolerance relation in U which is a mapping U → [0, 1] and
A is a fuzzy set in U , the upper (R ↑ A) and lower approximation of A (R ↓ A) is

calculated by R using different methods. The general form for this calculation from
[59] is as follows:

(R ↓ A)(x) = inf
y∈u
I(R(x, y), A(y)) (4.1)

(R ↑ A)(x) = sup
y∈u
T (R(x, y), A(y)) (4.2)

where I is an implicator and T is a t-norm which are fuzzy logic connectives crucial
for fuzzy rough hybridization. The Kleen-Diennes Implicator implemented in the

WEKA platform is defined as

TM = min(x, y) (4.3)
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IM = max(1− x, y) (4.4)

The FRNN algorithm combines fuzzy rough approximations and fuzzy nearest
neighbour algorithm which forms the basis for classification learning. Fuzzy nearest
neighbour (FNN) algorithm was introduced to classify test examples based on their

similarity to a given number K neighbours of training examples and membership
degrees to (crisp or fuzzy) class labels of these neighbours [60]. In the Fuzzy Rough
Nearest Neighbour (FRNN) implementation in WEKA, given a set of conditional
attributes C, R is defined as where Ra is the degree to which objects x and y are

similar for attribute a [59]:

R(x, y) = min
a∈C

Ra(x, y) (4.5)

The two options for Ra referred to option 1 (Eqn 4.6) and option 2 (Eqn 4.7)
respectively are:

R1
a(x, y) = exp

(
− (a(x)− a(y))2

2σ2
a

)
(4.6)

R2
a(x, y) = 1− ∥a(x)− a(y)∥

|amax − amin|
(4.7)

where σ2
a is variance of attribute a, and amax and amin are maximal and minimal

values of attribute a. For the sake of completeness, we use the FRNN algorithm
presented in [59] which is implemented in WEKA. We have used option 2 to report

the results in Chapter 5.

4.2.2 LEM2

The algorithm LEM2, is a data mining component of LERS system (Learning from
Examples using Rough Sets) which uses the idea of blocks of attribute-value pairs.
The input to the LEM2 Algorithm is a lower or upper approximation of a target
concept [61]. LEM2 generates rules by computing a single local covering of each

concept from the decision table [62]. For an attribute-value pair (a, v) = t, a block
of t, denoted by [t], is a set of all cases from U for attribute a having value v. Let B
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Algorithm 1: Fuzzy Rough Nearest Neighbor Classification [59]
Input : A decision table A = (U,A ∪ d) as training data; y is new data
Output: :Class is a predicted class

1 N←NN (y,K); /*NN is the k-nearest neighbor algorithm ∗/
2 T ←0; Class← ∅; /*T from Eqn. 4.2*/
3 foreach C ∈ d do
4 if ((R ↓ C)(y) + (R ↑ C)(y))/2 ≥ T then
5 Class ← C;
6 T ← ((R ↓ C)(y) + (R ↑ C)(y))/2;
7 end
8 Output: Class

be a non-empty lower or upper approximation of a target concept represented by a
decision-value pair (d, w) where d is the decision with values w [61]. Set B depends
on a set T of attribute-value pairs t = (a, v) if and only if t ∈ T , ∅ ̸= [T ] = ∩[t] ⊆ B

Set T is a minimal complex of B if the following conditions hold [63]:

• T ̸= ∅

• [T ]U ̸= ∅

• [T ]U ⊆ X

• there exists no T such that T ⊆ T and T is a minimal complex.

4.2.3 JRIP

JRIP performs Repeated Incremental Pruning to Produce Error Reduction
(RIPPER). JRip is a bottomup method rule learner [64]. The algorithm has 4

stages: Growing a rule, Pruning, Optimization and Selection [65].
The algorithm starts from the less prevalent class to the most frequent class and

each time grows one rule by adding antecedents (or conditions) to the rule until the
rule has maximum accuracy and meets the minimum rule description threshold.

The algorithm tries every possible value of each attribute and selects the condition
with highest information gain. Then, the algorithm prunes each rule incrementally.
After generating the initial rule set, we can generate and prune two variants of each
rule. In the next step, the smallest possible description length for each variant and
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the original rule is computed. The variant with the minimal description length is
selected as the final representative in the rule set.
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Chapter 5

Experiments, Results and
Discussion

5.1 Overview

In this chapter, we discuss the implementation of machine learning algorithms on
the multiple visits data set and analyze the results.

5.2 Experiments

Results of the following algorithms are reported in Table 5.1: Random Forest, JRIP-
Ripper Algorithm in WEKA 3.7.2 1 as well the classical rough sets model Rough
Sets implemented in RSES 2.2.2 [66]. The LEM2 algorithm was used to generate
the classification results [67]. Results from other fuzzy and rough sets algorithms
implemented in WEKA are reported in Table 5.5, we provide the results (average
values) in terms of classification accuracy (%), sensitivity(%), specificity (%), and

area under the curve (AUC) (%) for the four classifiers.
For the Random Forest classifier, the following parameters were used: maximum

depth was set to 6 and number of trees was set to 10. For the JRIP classifier, one
fold was used for pruning and two folds for growing the rules. For the FRNN

classifier, 10 nearest neighbours were chosen, with Kleen-Diennes Implicator and
Kleen-Diennes t-norm. For the results reported in Table 5.1, ten sets of training and

testing pairs were used for experimentation across both platforms (10-Fold Cross
1https://www.cs.waikato.ac.nz/ml/weka/index.html
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Table 5.1: Results - binary and ternary class experiments.

Metric Fuzzy Rough NN Random Forest JRIP Rough Sets (RSES)

Mean Accuracy Overall (Binary) 97.11 96.22 97.16 99.20
Mean Accuracy Overall (Ternary) 96.79 95.82 96.52 99.34
Accuracy (Binary- Better) 97.9 97.6 99.1 99.4
Accuracy (Binary- Worse) 95.7 93.9 93.8 98.78
Accuracy (Ternary- Better) 97.0 96.3 96.6 99.3
Accuracy (Ternary- Worse) 97.3 96.7 97.6 99.4
Accuracy (Ternary- NoChange) 99.2 98.5 98.7 99.8
Sensitivity (Binary- Better) 97.9 97.6 99.1 99.4
Sensitivity (Binary- Worse) 95.7 93.9 93.8 98.78
Specificity (Binary- Better) 95.7 93.9 93.8 98.78
Specificity (Binary- Worse) 97.9 97.6 99.1 99.4
AUC (Binary- Better) 0.99(96.845) 0.98(95.775) 0.96(96.505) 0.99
AUC (Binary- Worse) 0.99(96.845) 0.98(95.775) 0.96(96.505) 0.99
Sensitivity (Ternary- Better) 97.9 98.1 99.1 99.6
Sensitivity (Ternary- Worse) 95.0 93.6 93.5 98.7
Sensitivity (Ternary- NoChange) 94.2 87.7 86.5 99.3
Specificity (Ternary- Better) 95.5 93.6 92.4 98.9
Specificity (Ternary- Worse) 98.2 98.0 99.4 99.7
Specificity (Ternary- NoChange) 99.6 99.5 99.7 99.9
AUC (Ternary- Better) 0.91(96.7) 0.98(95.85) 0.96(95.75) 99.25
AUC (Ternary- Worse) 0.9(96.6) 0.98(95.8) 0.97(96.45) 99.2
AUC (Ternary- NoChange) 0.95(96.9) 0.96(93.6) 0.95(93.1) 99.6

Validation (CV) stratified method). We considered two forms of outcome of a
patients treatment: 2-class (Better or Worse) and 3-class (Worse, Better, or
NoChange) referred to as binary and ternary respectively. For the 2-class

experiment, the Better class contains 5,157 records and the Worse class contains
3,124 records. For the 3-class, the Better class contains 5,157 records, Worse class
contains 2,470 records and the NoChange class contains 654 records. The average

number of rules for JRIP for binary classification was 157 and for ternary
classification was 208. For RSES, the average number of rules for JRIP for binary

classification was 2,843 and for ternary classification was 2,758. The execution time
in secs per fold for each classifier was: Fuzzy Rough NN (0.01), Random Forest

(0.19-0.25), JRIP (1-1.5) and Rough Sets (12).
The result can be slightly different when we give the whole dataset to the algorithm
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Table 5.2: Experiments with automatic 10-fold cross validation

Classes FRNN(option2) FRNN(option1) Random Forest JRIP Rough Set

Binary 98.184 96.159 94.36 95.64 98.4
Ternary 96.437 95.894 94.80 96.473 97.5

Table 5.3: Experiments with 10-fold cross validation for 2-class dataset

Fold number Fuzzy Rough NN Random Forest JRIP (WEKA) Rough Set (RSES)

1 97.82 95.77 95.65 99.3
2 97.7 96.61 98.3 99.3
3 96.85 96.25 97.34 99.6
4 97.1 96.25 98.18 99.1
5 97.34 96.61 97.34 99.3
6 97.1 96.01 97.22 98.8
7 96.61 96.37 97.34 99.0
8 95.89 96.01 97.58 99.3
9 97.58 95.89 96.13 99.6
10 97.1 96.37 96.49 98.7
Mean 97.11 96.22 97.16 99.2

and choose cross validation default option since the folds will be chosen differently
and randomly. Table 5.2 shows the accuracy for 2-class and 3-class datasets in this

case.
Table 5.5 presents classification results of various nearest neighbour

implementations using different forms of fuzzy and rough sets.

All results are based on 10-fold CV done automatically by the WEKA FRNN tool.
Here is a brief description of the methods.

• Vaguely Quantified Nearest Neighbour (VQNN) classifier [68] which is based
on Vaguely Quantified rough sets (VQRS) algorithm introduced in [69]. VQRS
uses fuzzy linguistic quantifiers such as most and some to decide to what extent
an object belongs to the lower and upper approximations.

• Fuzzy Unordered Rule Induction Algorithm (FURIA) FURIA extends the well-
known RIPPER [70] algorithm and learns fuzzy rules.
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Table 5.4: Experiments with 10-fold cross validation for 3-class dataset

Fold number Fuzzy Rough NN Random Forest JRIP (WEKA) Rough Set (RSES)

1 97.22 95.29 97.34 99.1
2 97.34 96.01 95.04 99.4
3 96.73 96.13 95.53 99.6
4 96.73 95.16 96.98 99.3
5 97.34 96.61 96.61 99.6
6 96.37 95.41 97.46 99.6
7 96.98 95.77 97.46 99.0
8 96.13 96.13 96.13 99.4
9 96.73 95.65 96.61 99.3
10 96.37 96.01 96.014 99.1
Mean 96.79 95.82 96.52 99.34
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Table 5.5: Results - WEKA FRNN implementations

Algorithm Accuracy (3-class) Accuracy (2-class) Time 3 class (secs) Time 2 class (secs)

FNN 78.13 81.17 0.01 0.03
FNN-O 89.51 90.69 0.01 0.01
VQNN 81.99 84.70 0.01 0.02
FURIA 95.17 96.60 60.8 61.4
DC 91.57 92.21 0.01 0.01

• Fuzzy nearest neighbour (FNN) algorithm was introduced to classify test ex-
amples based on their similarity to a given number K neighbours of training
examples and membership degrees to (crisp or fuzzy) class labels of these neigh-
bours [60].

• Discernibility Classifier (DC) - uses the discernibility matrix for deriving rules [71].

For the fuzzy rough NN the time taken to build the model is almost 0.01 seconds for
each fold which makes it one of the fastest approaches among the algorithms. The
average time for building model using Random Forest for each fold is between 0.19

to 0.25 seconds approximately. JRIP is run with minimum total weight of the
instances in a rule set to 2, number of optimization runs 2, and no pruning. When
we activate pruning the running time for building the model increases drastically;

furthermore, the accuracy decrease. Increasing the number of optimization runs also
increase the accuracy of the result slightly in some cases. The average run time for
JRIP is between 1 to 1.5 second for each fold; therefore, even without pruning this

algorithm is slower compared to others. The number of rules generated for each fold
varies. Table. 5.6 shows number of the rules generated for each fold in RSES

compared to JRIP.
Figure 5.1 gives the prediction of unknown cases with RSES (LEM2 classifier). Here
we tested with samples with the class value removed. The coverage parameter for

LEM2 was set to 0.99 for training.
Tables 5.7 and 5.8 give the paired t-test results in terms of accuracy for the four
classifiers for the two sets of experiments. The following parameters were used:
two-tailed, α = 0.05 and n− 1 = 9 relative to 10 different training-testing runs,

where n is the degree of freedom, where α is the significance level and probability
distribution (Pr) value = 2.262.

From the results in Table 5.1, the Rough Sets classifier (with LEM2 method) gives
the best overall result in terms of overall classification accuracy, accuracy per class,
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Table 5.6: Number of rules for JRIP and RSES for both datasets

Fold number RSES rules 2-status RSES rules 3-status JRIP rules 2-status JRIP rules 3-status

1 2851 2770 129 226
2 2850 2776 161 186
3 2879 2770 156 187
4 2792 2703 171 204
5 2822 2727 158 198
6 2842 2756 155 222
7 2876 2798 176 227
8 2853 2801 171 211
9 2821 2737 137 209
10 2849 2749 158 212
Mean 2843.5 2758.7 157.2 208.2
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Figure 5.1: Prediction results of unknown cases with Rough Sets

Table 5.7: T-test results: Comparison of classification accuracies for Binary Classifi-
cation

Pairs Average difference T-stat

Fuzzy Rough NN Random Forest 0.894 0.002
Fuzzy Rough NN - JRIP 0.048 0.900
Fuzzy Rough NN- Rough Set 2.091 1.717
Random Forest - JRIP 0.942 0.002
Random Forest Rough Set 2.985 6.174
JRIP Rough Set 2.043 5.855

Table 5.8: T-test results: Comparison of classification accuracies for Ternary Classi-
fication

Pairs Average difference T-stat

Fuzzy Rough NN Random Forest 0.977 0.000
Fuzzy Rough NN - JRIP 0.277 0.381
Fuzzy Rough NN- Rough Set 2.546 5.198
Random Forest - JRIP 0.700 0.086
Random Forest Rough Set 3.523 6.996
JRIP Rough Set 2.823 4.881

sensitivity and specificity values for both the 2-class and the 3-class experiments.
The best accuracy (99.34%) was obtained in the ternary classification. It is

important to note in both cases (binary and ternary), the classification accuracy is
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over 99%. The class distribution in both experiments are highly imbalanced with
the Better class having almost 2.5 times more records than the Worse class and 7.9

times the NoChange class. The per class accuracy results are also consistently
better in the ternary classification across all three classes. FRNN and JRIP

classifiers are second best in terms of overall accuracy. The parameter settings for
FRNN (number of K neigbours) and for JRIP were tuned to get the best results.

Overall, FRNN gives the next best results.
In terms of sensitivity (or the true positive rate), the best result for the ternary
classification is with the better class (Rough Sets classifier- 99.6%). This is not

surprising since there are more training examples for this class. In terms of
specificity, the best result for the ternary classification is with the NoChange class

(or the true negative rate) is 99.9% which is consistent with the accuracy results for
this class. Overall, rule-based methods (RSES and JRIP) seem to do better that

tree-based ensemble (Random Forest) and Fuzzy Rough nearest neighbour (FRNN)
methods for this dataset. However, the number of rules using the LEM2 method is
almost 13 times more than the JRIP classifier. This is also reflected in the time it
takes for classification. In terms of execution time, FRNN is the best performing

classifier. We have presented classification results of other nearest neighbour
implementations using different forms of fuzzy and rough sets (Tables 5.5) where

FURIA gives overall classification accuracy of over 95% which is again a rule-based
classifier. The next best is the discernibility classifier (DC) which is also a

rule-based classifier. In terms of Area under the curve (AUC) which is a good
indicator of accuracy in datasets where the classes are imbalanced, we can claim the

best performance is related to ternary class for NoChange with value of 99.9%.
AUC values are calculated by WEKA and the values in parenthesis demonstrate the

AUC values calculated manually using the formula:

AUC =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (5.1)

One of the objectives of this thesis was to predict whether new patients could
potentially experience either an increase or decrease in clinical assessment tool

scores. We demonstrate this by presenting results for 15 cases (ternary classification)
with the LEM2 classifier in Figure 5.1. There are 8 features and one class feature
(suppressed). Those cases that have a class label (Better, Worse, NoChange) were

correct when compared with the actual values. It also has a label named MISSING.
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This is because the LEM2 method has only training coverage of 99% and may not
cover all cases. However, of the cases that were classified, all of them were correct.

Based on the results of a paired t-test in Tables 5.7 and 5.8, for the binary
classification, there is no difference between FRNN and Rough Set classifier

(highlighted in blue). There is also no difference between other classifiers. For the
ternary classification, there is a difference between Rough Set classifier and the

other classifiers (JRIP, RF and FRNN). The reason for the difference is mainly due
to need for parameter tuning with other method. However, with the Rough Set

classifier one can obtain interpretable rules.
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Chapter 6

Conclusion and Future Work

In this thesis, we have worked on the medical data from the Ekosi Health Clinic
which their focus is on delivering an innovative health care using cannabinoid
therapy especially for chronic pain, mood and sleep challenges. After extensive

pre-processing on the dataset, two labelling methods have been proposed to classify
the patients based the score of CAT value to binary and ternary classes and a new

class feature was indicative of the patient’s progress was added to the dataset.
Different rough and rough-fuzzy hybrid including rule-based and nearest neighbor

methods were applied as well as a tree-based approach. For making the comparison
more accurate, we performed the experiments on the same 10 folds for all the

algorithms. The result shows rule-based methods performs well especially LEM2, a
form of rough set algorithm, has the best performance compared to other methods.

Considering the timing of algorithms, FRNN is the fastest algorithm with
comparative results. Genetic algorithm has higher accuracy compared to FRNN and

more coverage compared to LEM2; however, it takes approximately 4 minutes to
generate the rules for each fold which makes it the slowest algorithm. To fulfill an

objective of this work, we can predict the progress of new patients having their
condition (ex., diagnosis, cannabinoid medication, gender) with promising accuracy.
Practically, this study highlights the need for additional research to further identify

predictability, patterns and understand the efficacy and real-world evidence
regarding cannabinoids for anxiety, depression, sleep disorders, chronic pain, and
arthritis. Due to the constraint of precise milligram cannabinoid dosing not being

analyzed in this study, future research which incorporates precision
cannabinoid-based medicine dosing data is desirable; as the combination of THC

and CBD appears to be most beneficial on GAD-7, PHQ-9, and PSQI scores,
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further research on the interaction of these two cannabinoids may lead to new and
valuable insights, for the benefit of patients and health care practitioners alike.

Another future direction can be working on patients with only one visit. More than
160 patients only visited the Ekosi Health center once during the time which data
was gathered. This fact highlights the need of further research on these patients as
their number is considerable. Since there is no sequence of data for these patients to
find a pattern, increase, or decrease in their CAT values and therefore, the trend of
progress, we can apply association rule mining approach, Apriori algorithm, to find

frequent itemset and general trend in the dataset and as a result generate rules.
One may try to extend this work on other diagnosis as in this thesis the focus was

on 13 types of diagnosis. Many diagnosis types were removed (278 types) or
combined into one category (112 types).

In our case, many patients had only two or three visits in the data set which was
not providing enough history (lack of data) to apply time series approaches.

However, having access to more patients and monitoring them during a longer
period of time, can enable a new path to analyze the data set and apply time series

prediction instead of the status computation method. The more the history of
patient’s feature values, the more possibility of fluctuation. Therefore, in the future

with larger data sets, we can consider other methods such as ARIMA algorithm.
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Chapter 7

Appendix

Statistic of data sets in each step of preprocessing: Original dataset received from
Ekosi: 541 patients, 32514 records

• 3 types of gender: 10881 records for males (188 patients), 21519 records for
females (353 patients), and 114 invalid gender records

• 82 types of age: frequent ones are 68, 58, 77, 59, 39 with respectively 1761,
1323, 1287, 1255, 1194 records

• 80 types of cannabinoid formula (order of frequency: CBD oil, CBD oil (20-
30mg/ml) & THC: CBD oil (10L15), THC: CBD oil, THC: CBD oils, Yellow
oil - CBD 20mg/ml THC < 1 mg/ml)

• 482 types of diagnosis (in order of frequency anxiety, arthritis, insomnia, chronic
pain, depressive)

After removing invalid values and separating them into 2 datasets: 375 patients,
29322 records

• 2 types of gender: 10092 records for males, 19230 records for females

• 77 types of age: frequent ones are 68, 58, 77, 59, 39 with respectively 1677,
1281, 1275, 1231, 1110 records

• 75 types of cannabinoid formula

• 390 types of diagnosis
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After removing diagnosis and cannabinoid formula not interested: 354 patients,
20026 records

• 2 types of gender: 6854 records for males, 13172 records for female

• 77 types of age

• 73 types of cannabinoid formula

• 112 types of diagnosis

After removing duplicates, the final dataset used for experiments: 354 patients,
8281 records

• 2 types of gender: 2911 records for males (126 male), 5370 records for females
(228 female)

• 76 types of age

• 4 types of cannabinoid formula

• 13 types of diagnosis
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Table 7.1: Result of Genetic Algorithm for 10-fold cross validation

Fold number Accuracy (Binary) Accuracy (Ternary)

1 0.984 0.969
2 0.989 0.982
3 0.996 0.99
4 0.986 0.981
5 0.992 0.983
6 0.994 0.984
7 0.984 0.986
8 0.987 0.978
9 0.99 0.981
10 0.988 0.978
Mean 0.989 0.981

Table 7.1 shows the results of applying Genetic Algorithm option in RSES.
Table 7.2 shows the results of FRNN algorithm using option 1 given in Chapter. 4.

Table 7.2: 10-fold cross validation accuracy for FRNN (option 1)

Fold number Accuracy (Binary) Accuracy (Ternary)

1 97.22 96.86
2 97.34 96.98
3 96.85 96.37
4 96.85 96.61
5 96.73 97.34
6 97.1 96.37
7 96.61 96.73
8 95.65 96.13
9 97.46 96.73
10 97.1 96.49
Mean 96.89 96.66
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