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Abstract

A cyclically t-complementary k-hypergraph is a k-uniform hypergraph
with vertex set V' and edge set E for which there exists a permutation
0 € Sym(V) such that the sets F, E?, E92, A B partition the set of
all k-subsets of V. Such a permutation 6 is called a (¢, k)-complementing
permutation. The cyclically ¢t-complementary k-hypergraphs are a natural
and useful generalization of the self-complementary graphs, which have
been studied extensively in the past due to their important connection to
the graph isomorphism problem.

For a prime p, we characterize the cycle type of the (p”, k)-complement-
ing permutations § € Sym(V') which have order a power of p. This yields
a test to determine whether a permutation in Sym(V') is a (p”, k)-comple-
menting permutation, and an algorithm for generating all of the cyclically
p"-complementing k-hypergraphs of order n, for feasible n, up to isomor-
phism. We also obtain some necessary and sufficient conditions on the
order of these structures. This generalizes previous results due to Ringel,
Sachs, Adamus, Orchel, Szymariski, Wojda, Zwonek, and Bernaldez.
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1 Introduction

For a finite set V and a positive integer k, let V(*) denote the set of all k-subsets
of V. A hypergraph with vertex set V and edge set E is a pair (V, E), in which
V is a finite set and E is a collection of subsets of V. A hypergraph (V, E) is
called k-uniform (or a k-hypergraph) if E is a subset of V(*). The parameters k



and |V| are called the rank and the order of the k-hypergraph, respectively. The
vertex set and the edge set of a hypergraph X will often be denoted by V(X)
and E(X), respectively. Note that a 2-hypergraph is a graph. An isomorphism
between k-hypergraphs X and X' is a bijection ¢ : V(X) — V(X’) which
induces a bijection from E(X) to E(X’). If such an isomorphism exists, the
hypergraphs X and X’ are said to be isomorphic.

A k-hypergraph X = (V, E) is cyclically t-complementary if there exists a
permutation 6 on V such that the sets E,E(”.,E‘gz7 .. .7E9t71 partition V(¥
We denote the set E? by E;. Note that EY = E;y fori = 0,1,...,t—2
and EY | = E; = E. Such a permutation 6 is called a (t,k)-complement-
ing permutation, and it gives rise to a family of ¢ isomorphic k-hypergraphs
{X;=(V,E;) :i=0,1,...,t — 1} which partition the complete k-hypergraph
on V, and which are permuted cyclically under the action of 6.

The cyclically t-complementatry k-hypergraphs have been previously defined
and studied in the cases where t = 2 or k = 2, and there is some overlap and
some contradiction between the terminology used in these cases. The cycli-
cally 2-complementary 2-hypergraphs are the self-complementary graphs. In
1978, M.J. Colbourn and C.J. Colbourn [3] showed that one of the most impor-
tant problems in graph theory, the graph isomorphism problem, is polynomi-
ally equivalent to the problem of determining whether two self-complementary
graphs are isomorphic. Since then, there has been a great deal of research into
self-complementary graphs. A good reference on self-complementary graphs
and their generalizations was written by A. Farrugia [4]. The cyclically 2-com-
plementary k-hypergraphs are the self-complementary k-hypergraphs studied in
[5, 8,10, 11, 12], and in the terminology of these papers the (2, k)-complementing
permutations are their corresponding ‘k-complementing permutations’, or ‘an-
timorphisms’. The cyclically t-complementary graphs (2-hypergraphs) are the
t-complementary graphs, or t-c graphs, studied in [1, 2] and in the terminology
of these papers the (t,2)-complementing permutations are their corresponding
‘t-complementing permutations’ or ‘t-c permutations’.

Whether or not a permutation 6 is (¢, k)-complementing depends entirely
on the cycle type of 6. The cycle type of the (2,2)-complementing permuta-
tions were characterized in [6, 7] and the cycle types of the (2,3)- and (2,4)-
complementing permutations were characterized in [8] and [9], respectively.
Quite recently, these earlier results were generalized to characterize the cycle
type of the (2, k)-complementing permutations in [5, 10, 12], and the cycle type
of the (t,2)-complementing permutations was determined in [1, 2]. In Theo-
rem 3.2, we generalize both of these new results and characterize the cycle type
of the (g, k)-complementing permutations which have order a power of p, where
q = p" is a prime power. We will show that this is sufficient to characterize all
of the (g, k)-complementing permutations for these ¢, and we obtain necessary
and sufficient conditions on the order of a g-complementary k-hypergraph.

In Section 2, we will prove some useful facts about (¢, k)-complementing
permutations, and then in Section 3, we will use these facts to prove the main
result in Theorem 3.2. This yields Corollary 3.3, which gives a method for



testing any permutation algorithmically to determine whether it is (g, k)-comple-
menting, and a method for generating all of the cyclically g-complementary k-hy-
pergraphs of order n, for feasible n. In Section 4, we obtain Corollary 4.1, which
gives necessary and sufficient conditions on the order of a g-complementary k-
hypergraph in the case where ¢ is a prime power, and these conditions simplify
in the case where ¢ is prime.

2 The (¢, k)-complementing permutations

We have the following natural characterization of the (¢, k)-complementing per-
mutations.

Lemma 2.1. Let V be a finite set, let k and t be positive integers, and let
0 € Sym (V). Then the following three statements are equivalent:

(1) 0 is a (t,k)-complementing permutation.
(2) A¥ £ A for j# 0 (mod t), for all A V®.
(8) The sequence A, AP A% A% has length divisible by t, for all A € V8,

Proof: Suppose 0 is a (¢, k)-complementing permutation. Then there is a
k-hypergraph X = (V,E) such that Eo, E1, ..., E,_; partitions V) where
E;=E”. Let Ae V®). Then A € E; for exactly one i € {0,1,...,t —1}. If
j #0 (mod t), then A” € EY = E(i+j) mod « # Ei. Hence A” ¢ F;, and so in
particular A% # A. Hence (1) implies (2).

Suppose (2) holds. Let j be the length of a sequence in (3). Then A% = A,
and so (2) implies that 7 =0 (mod ¢). Hence (2) implies (3).

Suppose (3) holds. To show that (3) implies (1), we describe a simple al-
gorithm which takes a permutation 6 satisfying (3) as input, and returns the
nonempty set Hy of all cyclically t-complementary k-hypergraphs X on V that
have 6 as a (t, k)-complementing permutation. This algorithm was previously
described in the case where k = 2 by Adamus et al [1].

Algorithm 2.2. Let 6 € Sym/(V) satisfy (3).

(I) Construct the orbits Oy,...,0,, of # on V*¥). Each orbit O, has the
form

A A% AT A
where A € V(¥) and hence each orbit O; is a sequence in (3).

(IT) For each j € {1,2,...,m}, choose ¢ € {0,1,...,t — 1} and let Ef denote
the set of k-sets of the form A% """ in the orbit O; constructed in (I), where
z is an integer. Since (3) holds, each orbit O; has length divisible by t.
Thus, within each orbit O;, # maps Ef to Efﬂ foreach:=0,1,...,t—2,
and 0 maps E/ | to EJ.



(III) Let F be a subset of V(*) that contains exactly one of the sets Eg, E{,
Ej, ..., E]_, constructed in (IT) for each j € {1,2,...,m}. Then X =
(V,E) is a cyclically t-complementary k-hypergraph. Moreover, if there
are m orbits of # on V() then there are t™ different choices for the
edge set F, and the t™ different choices for E generate the set Hy of
all t™ cyclically t-complementary k-hypergraphs on V for which 6 is a
(t, k)-complementing permutation.

In the next lemma, we obtain some useful properties of (¢, k)-complementing
permutations. For a permutation 6 on a set V', the symbol |#| denotes the order
of 6 in Sym(V).

Lemma 2.3. Let V be a finite set, and let s,t and k be positive integers such
that ged(t,s) = 1.

(1) A permutation 0 € Sym(V) is a (t,k)-complementing permutation if and
only if 0° is a (t, k)-complementing permutation.

(2) The order of a (t,k)-complementing permutation is divisible by t.

(8) If ¢ =p" is a prime power, every cyclically q-complementary k-hypergraph
has a (q, k)-complementing permutation with order a power of p.

Proof:

(1) If 0 € Sym(V) is a (¢, k)-complementing permutation, then there is a
cyclically t-complementary k-hypergraph X = (V, E) such that the sets

Eo,E1,...,E,_; partition V®) where E; = E?. Consider the sequence
E07 E57 EQS) Esq, ... ) E(t—l)sa

where each subscript is taken modulo ¢t. If is = js (mod t) for some i,
where 0 <14 < j <t —1, then since ged(s,t) = 1 we must have ¢ = j (mod
t), a contradiction. Hence the subscripts 0, s,2s, 3s, ..., (t—1)s are pairwise
incongruent modulo ¢, and hence the sets Ey, E, Eas, E3s, ..., Eg_1)s (with
subscripts taken modulo t) also partition V() That is, the sets

E,EY EO) O

partition V(*®) and so #* is a also (t, k)-complementing permutation of X.

Conversely, suppose that 6° is a (¢, k)-complementing permutation. Then
Proposition 2.1 guarantees that each orbit of #* on V) has cardinality
congruent to 0 modulo ¢ . Observe that each orbit of ° on V(%) is contained
in an orbit of # on V*), Also, every k-subset in an orbit of  on V*) must
certainly lie in an orbit of ° on V*). Since the orbits of #* on V) are



pairwise disjoint, it follows that every orbit of # on V%) is a union of pairwise
disjoint orbits of 6° on V*) each of which has cardinality divisible by ¢.
Hence every orbit of # on V) has cardinality divisible by ¢, and so by
Proposition 2.1, 6 is a (t, k)-complementing permutation.

(2) This follows directly from Lemma 2.1(2).

(3) Let X = (V,E) be a cyclically g-complementary k-hypergraph. Then X
has a (g, k)-complementing permutation o € Sym(V'), and by part (2), the
order of ¢ is divisible by ¢, and hence by p. Thus |o| = p®b for a positive
integer a and an integer b such that p does not divide b. Since ged(b, q) = 1,
part (1) implies that 6 = o is also a (g, k)-complementing permutation of
X, and its order is |0 = p®. 1

3 Cycle types of (g, k)-complementing permuta-
tions

For a prime power ¢ = p”, Theorem 3.2 gives a characterization of the cycle
types of the (g, k)-complementing permutations which have order equal to a
power of p, in terms of the base-p representation of k. We will make use of the
following technical lemma to prove Theorem 3.2.

Lemma 3.1. [5] Let £ and p be positive integers, wherep > 2. Letag,aq,...,a7-1
be nonnegative integers such that Zf;é a;p* > p*. Then there exists a sequence
of integers co,c1,...,co—1, where 0 < ¢; < a;, such that Zf:é cipt = pé. |

To state and prove Theorem 3.2, we require some terminology and notation.
We will denote the base-p representation of an integer k by b(p, k), where b(p, k)
is the vector (bm,bm—1,...,b1,b0)p. This is, b(p, k) is the vector such that
k=" ,bip", by #0, and b; € {0,1,...,p— 1} for 0 < i < m. The support of
the base-p representation b = b(p, k) is the set {i € {0,1,2,...,m} : b; # 0}, and
is denoted by supp(b). For positive integers m and n, let N[m) denote the unique
integer in {0, 1,...,m — 1} such that n = ny,(mod m). For a permutation ¢
on a set V', an invariant set of 0 is a subset of V which is fixed set-wise by 6.

Theorem 3.2. Let V be a finite set and let k be a positive integer such that k <
|V|. Let g = p" be a prime power, and let b =b(p,k) = (b, bm—1,...,b2,b1,b0)p
be the base-p representation of k. Let 8 € Sym(V) be a permutation whose
order is a power of p. For an integer m > 0, let A,, denote those points of V
contained in cycles of 0 of length at most p™. Then 0 is a (q, k)-complementing
permutation if and only if there is £ € supp(b) such that

|Ag+r,1| < k[lerl].

t



Proof: (=)
Claim 1: If 6 € Sym(V) has order a power of p and |As| > kper1) for all
£ € supp(b), then 0 has an invariant set of size k.

Proof of Claim 1: Suppose that § € Sym(V') has order a power of p, and that
|A¢| = ke for all £ € supp(b). Every cycle of 6 has length a power of p. Let
a; denote the number of cycles of 8 of length p*. If a; > b; for every i € supp(b),
then there would be an invariant set of 6 of cardinality Ziesupp(b) bipt =k, as
claimed. Hence we may assume that, for some i € supp(b), a; < b;. Let

L = {i € supp(b) : a; < b;}. (1)
Then L # ). Since L C supp(b), we have |Ag| > kppeq1y for all £ € L.
Now |Ay| = Zf:o a;p*. Note that ppes) = Zf:o b;p'. Thus, by assumption,
Sipaip’ > S bip' for all £ € L. Let
L={t,l,...,0.}
where 01 < lp < --- < {,.

e Claim 1A: Let = € {1,2,...,z}. If [Ay]| > i byt for all j €
{1,2,..., 2}, then 0|4, has an invariant set of size Zflo bip'.

Proof of Claim 1A: The proof is by induction on z.
Base Step: If x =1 and |4, | > Zfl:o b;p’, then

0 0
A [ =) ap’ =) bip'. (2)
i=0 i=0

Since /7 is the smallest element of the set L defined in (1), it follows that
a; > b; for 0 <i</¥¢; —1 and as, < by,. Thus (2) implies that

l1—1

> (@i =bi)p' > (be, —ar,)p"

=0

holds with a; — b; > 0 for all i = 1,2,...,¢; — 1. Applying Lemma 3.1
be, — ag, times, we obtain a sequence co,cq, ..., c¢—1 such that 0 < ¢; <
(a; —b;) for 0 <i<¥¢; —1, and

011
Z Cipl = (bel — Gy, )ph'
i=0
Now let a; =b; +¢; for 1 <i < {¢; —1 and let ay, = ay,. Then



for 1 <i</;—1and hence 0 < a; < a; for 0 <7 < /. Moreover
01—1 0—1 0—1

£y
daipt = b+ Y ap +anp™ =D bip' + (b, — ag,)p" + ag,p”
i=0 i=0 i=0 i=0
and hence
61 161
D aw' =) bt
i=0 i=0
The sum Zflzo a;p' is the sum of the lengths of a collection of cycles of
0]4,,, and hence it is the size of an invariant set of 6|4, . Thus 0|4, has

. . . ‘ ; .
an invariant set of size ) ;! b;p’, as required.

Induction Step: Let 2 < 2 < z and assume that if |4 > Zfio bip
for all j € {1,2,...,2 — 1}, then 0|Alm_1 has an invariant set of size
Zfiﬁl bip'. Now suppose that |4, | > Zfio bip' for all j € {1,2,...,z}.
Then certainly A, | > Zfio bip for all j € {1,2,...,0 — 1}, and so by
the induction hypothesis, 04,  has an invariant set of size Zfif)l bip'.
By the definition of L in (1), a; > b; for £, 1 <i < {,. Thus 0 |4, _, has

an invariant set of size Zfial b;p'. This implies that there is a sequence
of integers cp,c1,...,ce,—1 such that 0 <¢; <a; for 0 <¢< /¢, — 1, and

ly—1 ly—1

> et = bip'. (3)
=0 1=0

Since |Ag, | > Efio bip’, we have

la s
D aipt =D bip'. (4)
0

= =0

Since ¢, € L, ag, < be,, so (3) and (4) together imply that

Ly—1
> (ai —c)p' > (b, — ag,)p'.
i=0
Since a; —¢; > 0 for 0 < ¢ < /¢, — 1, we can apply Lemma 3.1 by, — ay,
times to obtain a sequence of non-negative integers do,ds, ..., ds,—1 such
that 0 < d; < (a; —¢;) for 0 <i < /¥, —1, and
£p—1

> dip' = (b, — ag,)p".
=0

Now let a; = ¢; +d; for 0 <4 < ¥, — 1 and let ay, = ae,. Then one can
check that 0 < a; < a; for 0 <1i < /., and

. .
E a;p" =) bip".
i=0 i=0



Since Zfio a;p’ is the sum of the lengths of a collection of cycles of 0] a,,

o . t, ; .
we conclude that 6|4, has an invariant set of size ) ;* b;p’, as required.

Hence by the principle of mathematical induction, Claim 1A holds for
all x € {1,2,...,z}. (Claim 1AM

Now applying Claim 1A with o = 2, we observe that since |4y, | > Zfio b;p*
forall j € {1,2,...,2}, 0|4, has an invariant set of size Zf;o b;p’. But since £,
is the largest element of L, § contains b, cycles of length p* for all £ € supp(b)

with £, < £ < m, and hence 6 contains an invariant set of size Z;ZO bipt = k.
This proves Claim 1. (Claim 1) 11

Now suppose that § € Sym(V) is a (g, k)-complementing permutation with
order a power of p. For an integer j, let A) denote the set of elements of V'
which lie in cycles of 67 of length at most p’. Note that AJ: = A4, where a is
the largest integer such that p® divides j. 4

If [Agyr—1| > ke for all £ € supp(b), then for j = p"~! we have |A)| =
|Aeyr—1| = kppetry for all £ € supp(b). Hence Claim 1 implies that 67 has an
invariant set of size k. But since ¢ = p", j = p"~! #Z 0 (mod ¢), and so the
fact that 67 fixes a k-subset of V contradicts Lemma 2.1. We conclude that
| Apr—1| < Kpper) for some £ € supp(b), as claimed.

(<) Let 8 € Sym(V) with order a power of p and suppose that there is
¢ € supp(b) such that [Agi,—1| < Kpetr. Let j be an integer such that
Jj # 0 (mod ¢). Then j = p®b for integers a and b where 0 < a < 7 and p
does not divide b. Thus |A}| = |Asral < [Aryr—1| < Epperr). This implies that
67 does not have an invariant set of size k. Since j was chosen arbitrarily, we
conclude that A?” # A for all j # 0 (mod ¢) and all A € V¥ and so Propo-
sition 2.1 implies that 6 is a (g, k)-complementing permutation. |

Lemma 2.3 and Theorem 3.2 together yield the following characterization of
q, k)-complementing permutations.
g

Corollary 3.3. Let k be a positive integer, let ¢ = p” be a prime power, let
b = b(p, k) be the base-p representation of k, and let V' be a finite set. A per-
mutation o € Sym(V) is a (g, k)-complementing permutation if and only if
lo| = jp® for some integers i and j such that i > 1 and ged(p,j) = 1, and
0 = o7 satisfies the condition of Theorem 3.2 for some £ € supp(b).



Corollary 3.3 and the conditions of Theorem 3.2 can be used to test a permu-
tation algorithmically to determine if it is a (g, k)-complementing permutation.

If g = p" is a prime power, Lemma 2.3(3) guarantees that every cyclically
g-complementary k-hypergraph has an (g, k)-complementing permutation which
has order a power of p. Hence we can generate all of the cyclically g-complemen-
tary k-hypergraphs of order n, up to isomorphism, by applying Algorithm 2.2
to find Hy for every permutation € in Sym(n) satisfying the conditions of The-
orem 3.2. Moreover, if we just wish to generate at least one representative of
each isomorphism class of cyclically g-complementary k-hypergraphs of order
n, it suffices to apply Algorithm 2.2 to one permutation 6 from each conjugacy
class of permutations in Sym(n) satisfying the conditions of Theorem 3.2.

4 Necessary and sufficient conditions on order

In this section, we present necessary and sufficient conditions on the order n
of a cyclically g-complementary k-hypergraph when ¢ = p” is a prime power.
Since Lemma 2.3(3) guarantees that every cyclically g-complementary k-hy-
pergraph has a (g, k)-complementing permutation with order equal to a power
of p, Theorem 3.2 immediately implies the following necessary and sufficient
conditions on the order of these structures.

Corollary 4.1. Let k and n be positive integers, k < n, let ¢ = p” be a prime
power, and let b be the base-p representation of k. There exists a cyclically q-
complementary k-hypergraph of order n if and only if there is £ € supp(b) such
that

N[pt+r] < k[pe+1]. (5)

Corollary 4.2. Let k and n be positive integers, k < n, let p be a prime, and let
b be the base-p representation of k. There exists a cyclically p-complementary
k-hypergraph of order n if and only if

nppet1] < ket for some £ € supp(b).

Proof: Set ¢ = p' in Corollary 4.1. Then r = 1 and so the only choice for
a € {0,1,...,7 — 1} is a = 0. Thus there exists a cyclically p-complementary
k-hypergraph if and only if condition (5) holds with a = 0 for some £ € supp(b).}

When the rank k is within p — 1 of a multiple of a power of a prime p,
then Corollary 4.2 yields the following more transparent necessary and sufficient
conditions on the order of a cyclically p-complementary k-hypergraph.

Corollary 4.3. Let ¢ be a positive integer and let p be prime.



1. If k = bep® for 0 < by < p, then there exists a cyclically p-complementary
k-hypergraph of order n if and only if npesr) < k.

2. If k = byp® + by where 0 < by, by < p, then there exists a cyclically p-com-
plementary k-hypergraph of order n if and only if np,) < by or npyessy < k.

Proof:

1. In this case supp(b) = {£}, and so Corollary 4.2 implies that there exists
a cyclically p-complementary k-hypergraph of order n if and only if

N[pt+1) < k[pz+1]. (6)
Since k = byp® < p'*1, kiper) = k, and so (6) is equivalent to npetry < k.

2. In this case supp(b) = {0,¢} and so Corollary 4.2 implies that there ex-
ists a cyclically p-complementary k-hypergraph of order n if and only if
npp < k[p] OT T[pe+1] < k[pz+1]. Since k = bgpz+bo, k[p] = bg and k[pe+1] =k,
the result follows. |

In the case where k = Y_;_,(p — 1)p’** for a nonnegative integer s, the condi-
tion of Corollary 4.2 holds for the largest integer in the support of the base-p
representation of k, as the next result shows.

Corollary 4.4. Let r,s and £ be nonnegative integers, let p be prime, and
suppose that k = Zfzo(p — 1)p**t. Then there ezists a cyclically p-complemen-
tary k-hypergraph of order n if and only if npy,eroiay < k.

Proof: Suppose that there exists a cyclically p-complementary k-hypergraph
of order n, and let b be the base-p representation of k. Then

supp(b) = {4, L+ 1,..., 0+ s},
and so Corollary 4.2 guarantees that
Npetit1] < Kppetiti), (7)
for some j € {0,1,2,...,s}. If (7) holds for some j < s, then the fact that
nppetGrn+1) < (p— DptHtt 4 Npttiti]

implies that _
NpperGn+1) < (p— Dp Tt 4 Kipe+ata). (8)

Now since (p — Dp™+1 + kiyeosin) = (p— VPt + X_y(p — Dpttt =
k[1)£+(j+l)+1], (8) implies that

NpetG+D+1] < k[p£+(j+1)+1]7

10



and hence (7) also holds for j + 1. Thus, by induction on j, the fact that
(7) holds for some j € {0,1,...,s} implies that (7) holds for j = s. Hence
n[pz+.<+1] < k‘[p£+s+1] =k.

Conversely, Corollary 4.2 guarantees that there exists a cyclically p-com-

plementary k-hypergraph of order n for every integer n such that npe+ss1) <
k[pé+s+1] - k I

Corollary 4.5. If k = p* — 1, then there exists a cyclically p-complementary
k-hypergraph if and only if npe < k.

Proof: Sincek = Zf;é (p—1)p?, the result follows directly from Corollary 4.4.1

5 Acknowledgement

The author would like to thank Mike Newman for suggesting this research prob-
lem.

References

[1] L. Adamus, B. Orchel, A. Szymanski, P. Wojda and M. Zwonek, A note on
t-complementing permutations for graphs. To appear (2009).

[2] J.M. Bernaldez, On k-complementing permutations of cyclically k-comple-
mentary graphs, Discrete Math. 151 (1996), 67-70.

[3] M.J. Colbourn and C.J. Colbourn, Graph isomorphism and self-comple-
mentary graphs, SIGACT News 10 (1) (1978), 25-29.

[4] A. Farrugia, Self-complementary graphs and generalizations: a comprehen-
sive reference manual. Master’s Thesis, University of Malta, 1999.

[5] S. Gosselin, Generating self-complementary uniform hypergraphs. To ap-
pear (2008).

[6] G. Ringel, Selbstkomplementére graphen, Arch. Math. (Basel) 14 (1963)
354-358.

[7] H. Sachs, Uber selbstkomplementiire graphen, Publ. Math. Debrecen 9
(1962), 270-288.

[8] D.A. Suprunenko, Self-complementary graphs, Cybernetica 21 (1985), 559-
567.

[9] A.Szymanski, A note on self-complementary 4-uniform hypergraphs, Opus-
cula Mathematica 25 (2) (2005), 319-323.

11



[10] A. Szymanski and A.P. Wojda, Self-complementing permutations of k-
uniform hypergraphs. Discrete Math. Theor. Comput. Sci. 11 (2009), 117-
123.

[11] A. Szymanski and A.P. Wojda, A note on k-uniform self-complementary
hypergraphs of given order. Discuss. Math. Graph Theory 29 (2009), 199-
202.

[12] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph The-
ory 26 (2006), 217-224.

12



