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Abstract

In 2007, Szymanski and Wojda proved that for positive integers n, k
with & < n, a self-complementary k-uniform hypergraph of order n exists
if and only if (}) is even. In this paper, we characterize the cycle type
of a k-complementing permutation in Sym(n) which has order equal to
a power of 2. This yields a test to determine if a finite permutation is a
k-complementing permutation, and an algorithm for generating all self-
complementary k-hypergraphs of order n, up to isomorphism, for feasible
n. We also obtain an alternative description of the necessary and sufficient
conditions on the order of a self-complementary k-uniform hypergraph, in
terms of the binary representation of k. This extends previous results
for the cases k = 2,3,4 due to Ringel, Sachs, Suprunenko, Kocay and
Szymarski.
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1 Introduction

For a finite set V and a positive integer k, let V*) denote the set of all k-subsets
of V. A hypergraph with vertex set V and edge set E is a pair (V, E), in which
V is a finite set and E is a collection of subsets of V. A hypergraph (V, E) is
called k-uniform (or a k-hypergraph) if E is a subset of V(*). The parameters
k and |V| are called the rank and the order of the k-hypergraph, respectively.
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The vertex set and the edge set of a hypergraph X will often be denoted by
V(X) and E(X), respectively. Note that a 2-hypergraph is a graph.

An isomorphism between k-hypergraphs X and X' is a bijection ¢ : V(X) —
V(X’) which induces a bijection from E(X) to E(X’). If such an isomorphism
exists, the hypergraphs X and X’ are said to be isomorphic. The complement
X of a k-hypergraph X = (V, E) is the hypergraph with vertex set V and edge
set VI®\ E. A k-hypergraph X is called self-complementary if it is isomorphic to
its complement. An isomorphism between a self-complementary k-hypergraph
X = (V,E) and its complement X is called an antimorphism of X. The set of
all antimorphisms of X will be denoted by Ant(X).

An antimorphism of a self-complementary k-hypergraph is also called a k-
complementing permutation, and we have the following natural characterization.

Proposition 1.1. [9] Let V be a finite set, let k be a positive integer, and let
0 € Sym(V). Then the following three statements are equivalent:

1. 0 is a k-complementing permutation.
2. A £ A, for all A€ V®), for all j odd.
3. The sequence A, AQ,A62, /1‘937 ... has even length, for all A € V),

Conditions (2) and (3) of Proposition 1.1 depend entirely on the cycle lengths
in the disjoint cycle decomposition of §. Wojda [9] gave the following charac-
terization of the k-complementing permutations in Sym(n).

Theorem 1.2. (Wojda [9]) Let k, m and n be positive integers, let V be a finite
set, V| =n, and let 0 € Sym(V') with orbits O1,Oa,...,Op,. Let 29(2s; + 1)
denote the cardinality of the orbit O;, for i = 1,2,...,m. The permutation o
is a k-complementing permutation if and only if, for every ¢ € {1,2,...,k} and
for every decomposition

k=k +ko+---+ks

of k, where k; = 2P (2r; + 1) for nonnegative integers pj,rj, for j =1,2,...,¢,
and for every subsequence of orbits

0i,0iy,...,0;,

such that k; < |Oy,| for j = 1,2,...,¢, there is a subscript jo € {1,2,...,(}
such that pj, < qi, - ]

In Theorem 2.2 we give a more transparent characterization of the cycle
types of k-complementing permutations which have order equal to a power of 2,
and Corollary 2.4 shows how we can use it to test whether a finite permutation
is a k-complementing permutation. In Section 4, we use the characterization of
Theorem 2.2 to obtain an algorithm for generating all of the self-complementary
k-hypergraphs of order n, up to isomorphism, for feasible n.

In 2007, Szymaiiski and Wojda [8] solved the problem of the existence of a
self-complementary k-hypergraph of order n.



Theorem 1.3. [8] Let k and n be positive integers such that k < n. A self-
complementary k-uniform hypergraph of order n exists if and only if (Z) is even.

In Section 3, we give an alternative description of the condition that (Z) is
even, in terms of the binary representation of k (see Corollary 3.2). This yields
more transparent conditions on the order of a self-complementary k-hypergraph
when the rank k is a sum of consecutive powers of 2.

2 Cycle lengths of antimorphisms

Theorem 2.2 gives a characterization of the cycle types of antimorphisms of
k-hypergraphs which have order equal to a power of 2, in terms of the binary
representation of k. This yields an alternative description of the necessary and
sufficient conditions of Theorem 1.3. We will make use of the following technical
lemma to prove Theorem 2.2.

Lemma 2.1. Let ¢ and x be positive integers where x> 2. Letag,ay,...,ap_1

be nonnegative integers such that Zé_(l) a;xt > :c Then there exist integers

Co,C1y...,Co_1, where 0 < ¢; < a;, such that Zt 0 cirt = b,
Proof: The proof is by induction on ¢.

Base Step: The statement is certainly true if ¢ = 1, for if there is a nonneg-
ative integer ag such that apz® > x' = z, then ag > =, and so the result holds
with ¢ = .

Induction Step: Let £ > 2 and assume that the statement is true for £ — 1.

That is, assume that if there is a sequence of non-negative integers ao, . .., a¢—2
such that ZZ:S a;x' > =1, then there exists a sequence of integers ¢, ..., Co—2
with 0 < ¢&; < ay, for 0 <7 < /£ — 2, such that Zl Oclx = g1

Now suppose that ag,...,as—1 is a sequence of nonnegative integers such

that Zz —o 4Tt > xf. If ag_; > x, then to obtain the desired sequence, set
C; —Ofor() <i <€—2 and set ¢y_1 = . Then 0 < ¢; < a; for all 7, and
l—1 Vi
Y oilo Cixt =z, as required.
Hence we may assume that ay_; < x — 1. Suppose that ay_1 = x — k for an

integer k such that 1 < k < z. In this case ag,aq,...,a¢—2 is a sequence such
that

-2

Zaixl > gt — (x — k)xéil = ka1,

i=0

and so we may apply the induction hypothesis k times to obtain k sequences
of integers {c;},{c?},...,{cF} such that 0 < Z?:o e <afor 0<i<l-—2
and Zf gc{:z: =271, for 1 < j < k. Now to obtain the desired sequence, set

Z] 1c] f0r0<z < ¢ —2,and set ¢y_1 = ag_1 = ¥ — k. Then certainly



0<¢ <a;for 0<i</{—1. Moreover,

-1 £0—2
cixi = cixi +co1x -1
i=0 i=0
=2 | k
= Zcﬂ 4 (z— k)t
i=0 | j=1
E T6—2
:Z [ cat| 4+ (z — k)zt!
j=1 Li=0

as required. O

To state and prove Theorem 2.2, we require some terminology and nota-
tion. We will denote the binary representation of an integer k by a vector
b = (bm,bm—1,...,b1,bo)2. This is, b is the vector such that k = > * b;2",
bm =1, and b; € {0,1} for 0 < ¢ < m. The support of the binary representation
b is the set {i € {0,1,2,...,m} : b; = 1}, and is denoted by supp(b). For pos-
itive integers m and n, let np,) denote the unique integer in {0,1,...,m — 1}
such that n = np,)(mod m).

Theorem 2.2. Let V be a finite set, let k be a positive integer such that k < |V,
and let b = (b, bm—1,...,b2,b1,b0)2 be the binary representation of k. Let
0 € Sym(V') be a permutation whose order is a power of 2. Given £ € supp(b),
let Ay denote those points of V contained in cycles of 0 of length < 2¢, and let
By denote those points of V contained in cycles of 0 of length > 2¢. Then 0 is a
k-complementing permutation if and only if, for some £ € supp(b), V = A;U By
and |Ag‘ < k[212+1].

Proof: (=) Suppose that 6 is a k-complementing permutation of order a
power of 2. Then every cycle of 6 has length a power of 2. If 8 contained a cycle
of length 27 for every i € supp(b), then there would be an invariant set of 6 of
cardinality Ziesupp(b) 2! = k, a contradiction. Hence, for some ¢ € supp(b), 0
does not contain a cycle of length 2°.

Let

L = {¢ € supp(b) : 6 does not contain a cycle of length 2¢}. (1)

Then V' = AU By for all £ € L. It remains to show that |A| < kjger1) for some
le L.
Suppose to the contrary that |As| > kper1) for all £ € L. Write [Ay| =

Ef;é a;2', where a; is the number of cycles of 6 of length 2°. Note that kjper1) =



Zf:o b;2¢. Thus, by assumption, |4, > Zf:o b;2¢ for all £ € L. Suppose
L= {£1,€2,...,€t} where 01 < fy < --- < {;.

e Claim A: Letz € {1,2,...,t}. If|A;,| > Y0 b2 forall j € {1,2,...,},
then 6|4, has an invariant set of size Zfio b; 2t

Proof of Claim A: The proof is by induction on x. First note that
ngolaﬂi = |Ayl, for j = 1,2,...,t. Also, for any sequence of inte-
gers ag, a1, . ..,ag;—1 such that 0 < a; < a; for 0 <@ < ¢; — 1, the sum
ngl ;2% is the sum of the lengths of a collection of cycles of 9|Aej, and
hence it is the size of an invariant set of 6 Agy- Conversely, any invariant
set S of G\Aéj corresponds to a collection of cycles of 9'1‘% whose lengths
sum to |S|, and hence there exists a sequence of integers do, G1,...,as, 1

such that 0 < a; <a; for 0 <i</¢; —1, and |S| = Effol a;2".

Base Step: If x =1 and |4, | > Zfl:o b;2¢, then

l1—1 1
A | =) a2 > b;2" (2)
=0 =0

By the definition of L in (1), it follows that a; > b; for 0 < ¢ < ¢ — 1.
Hence (2) implies that

l1—1
Z (CL{, — b7)22 Z 241
i=0
holds with a; —b; > Ofor all¢i =1,2,...,¢;—1. Thus by Lemma 2.1, there
is a sequence cg, c1, .. ., ¢, —1 such that 0 < ¢; < (a;—b;) for 0 < i < 43 —1,
and
l1—1

D 2t =20
1=0

Now let a; = b; + ¢;. Then

0<a;=b;+c¢; <b+ (a;—b;) =ay

and hence
0<a; <ay
for0<i</{;—1,and
-1 -1 -1 -1

2
D a2t =) b2+ > 2t =) b2 420 =D b2
=0 1=0 =0 =0 1=0

. . . ¢ ; .
Thus 0|4, has an invariant set of size ) ;1 b;2’, as required.



Induction Step: Let 2 < x <t and assume that if |4, | > Zfio b; 2t
for all j € {1,2,...,2 — 1}, then 0]4,  has an invariant set of size

Zfi’al b;2'. Now suppose that [A,,| > Zf;o b;2¢ for all j € {1,2,...,2}.
Then certainly [Ag| > Zfio b;2¢ for all j € {1,2,...,2 — 1}, and so by
the induction hypothesis, 6| 4,,_, has an invariant set of size Zf;al b; 2%

This implies that there is a séquence of integers cp,c1,...,ce,_,—1 such
that 0 <¢; <a;for 0<i </, 1 —1, and

lp—1—1

o1
o2 = b2l (3)
=0 =0

Since |4y, | > Efio b;27, we have

£r—1

Z ;2" > Zb 20 (4)

Since ;1 € L, ag,_, =0, so (4) implies that

lp—1 ly_1—1 lp—1
[Ar,| = > a:2' = Z a2 + Z ;2" > Zb 20
1=0 i=Lly_1+1
Hence by (3), we have
bp—1—1 lyp—1 Ly
> e S ars ¥
i=0 =0y +1 i=ly 11

This implies that

le—1—1 £y—1
Yoo(ai—e)2 Y (a—b)2 > 2 (5)
1=0 i=ly_1+1

By the definition of L in (1), we have a; —b; > 0 for {,_1 +1 < i <
£y —1. Also, a; —¢; > 0for 0 <3 </¥, 1 —1. Thus (5) and Lemma 2.1
guarantee that there exists a sequence of integers do,di,...,de,—1 such
that 0 < d; < (a; —¢;) for 0<i <, 1 —1,dp,_, =0, O<d < (a; — b;)
forl,_1+1<i</{,—1,and

ly—1

D di2t =25,
i=0
Now define a sequence of integers ag, a1, ...,a0s,—1 by

ci+dy, H0<i<l, -1
di: 07 lf’L:&L_l

bi+d;, fl,_1+1<i</l,—1



Then one can check that 0 < a; < a; for 0 <i </, —1, and

ly—1

L
D a2t =) b2h
i=0 i=0
Thus 6], has an invariant set of size ), b;2", as required.

Hence by mathematical induction, Claim A holds for all z € {1,2,...,¢}.

Now applying Claim A with = = t, we observe that |A4,,| > ijzo b; 2% for all
j €{1,2,...,t}. Hence 0|4, has an invariant set of size th:o b;2'. But since
{4 is the largest element of L, 0|p,, (and hence 6) contains a cycle of length
2¢ for all ¢ € supp(b) with ¢; < ¢ < m, and hence 6§ contains an invariant set
of size Y .- b;2" = k. This contradicts the fact that 6 is a k-complementing
permutation.

We conclude that for some j € {1,2,...,t}, [Ag,| < Zfio b;2¢. For this j,
set £ ={;. Then ¢ € supp(b) and |A¢| < kjpe+1), as required.

(<) Let 8 € Sym(V) with order a power of 2 and suppose that, for some
¢ € supp(b), V = AU By and |Ay| < kfge11y. This implies that 6 does not have
an invariant set of size k. Moreover, since the order of 0 is a power of 2, for
each odd integer j, 6/ has the same cycle type as 6, and hence 67 also has no
invariant set of size k. Hence A% # A for all odd integers j and all A € V()
and so Proposition 1.1 implies that 6 is a k-complementing permutation. U

Lemma 2.3. Let V be a finite set, and let s be an integer. A permutation
0 € Sym(V) is a k-complementing permutation if and only if 02°*1 is a k-
complementing permutation.

Proof: If 0 € Sym(V) is a k-complementing permutation, then 0 € Ant(X)
for some self-complementary k-hypergraph X = (V| E), and so 0 is a bijection
from E to E€ and a bijection from E¢ to E. It follows that 62571 € Ant(X).
Conversely, suppose that #2°*! is a k-complementing permutation. Then
Proposition 1.1 guarantees that each orbit of #2511 on V(¥ has even cardinal-
ity. Observe that each orbit of #2511 on V(*) is contained in an orbit of 6 on
V*)_ Also, every k-subset in an orbit of # on V*) must certainly lie in an
orbit of 62511 on V(¥ Since the orbits of 82511 on V(¥) are pairwise disjoint,
it follows that every orbit of § on V*) is a union of pairwise disjoint orbits of
6%st1 on V(¥ each of which has even cardinality. Hence every orbit of 6 on
V) has even cardinality, and so by Proposition 1.1,  is a k-complementing
permutation. O

For a permutation 6§ on a set V', the symbol |0| denotes the order of 6 in
Sym(V). Lemma 2.3 and Theorem 2.2 together yield the following characteri-
zation of k-complementing permutations.



Corollary 2.4. Let k be a positive integer, let b be the binary representation of
k, and let V be a finite set. A permutation o € Sym(V) is a k-complementing
permutation if and only if |o| = 21(2t + 1) for some integers t,i such that i > 1
and t > 0, and 0 = o**! satisfies the conditions of Theorem 2.2 for some
£ € supp(b). O

Corollary 2.4 and the conditions of Theorem 2.2 can be used to test a per-
mutation algorithmically to determine if it is a k-complementing permutation.

3 Necessary and sufficient conditions on order

In this section, we present an alternative description of the necessary and suffi-
cient condition on the order n of a self-complementary k-hypergraph of Theo-
rem 1.3.

Lemma 3.1. A self-complementary k-hypergraph has an antimorphism whose
order is equal to a power of 2.

Proof: Let X be a self-complementary k-hypergraph, and let 6 € Ant(X).
Proposition 1.1 guarantees that 6 has even order, so |0] = 2%s for some positive
integer z and some odd integer s. Since s is odd, 8° € Ant(X), and 6° has order
equal to a power of 2. O

Lemma 3.1 and Theorem 2.2 immediately imply the following necessary and
sufficient conditions on the order of a self-complementary uniform hypergraph
of rank k.

Corollary 3.2.
Let k and n be positive integers, k < n, and let b be the binary representation
of k. There exists a self-complementary k-hypergraph of order n if and only if

nge+1] < k[2£+1] for some { € Supp(b). (6)
O

In Lemma A.1 it is shown directly that condition (6) is equivalent to the condi-
tion that (}) is even.
When k = 2¢ or k = 2° + 1, Corollary 3.2 yields the following result.

Corollary 3.3. Let ¢ be a positive integer.

1. If k = 2%, then there exists a self-complementary k-hypergraph of order n
if and only if npeiy < k.

2. If k = 2° 41, then there exists a self-complementary k-hypergraph of order
n if and only if n is even or njger1y < k.

O



For example, Corollary 3.3 states that there exists a self-complementary
graph of order n if and only if n = 0 or 1 (mod 4), these exists a self-com-
plementary 3-hypergraph of order n if and only if n = 0,1, or 2 (mod 4),
and there exists a self-complementary 4-hypergraph of order n if and only if
n=0,1,2 or 3 (mod 8).

In the case where k is a sum of consecutive powers of 2, the condition of
Corollary 3.2 holds for the largest integer in the support of the binary represen-
tation of k, as the next result shows.

Corollary 3.4. Let v and ¢ be nonnegative inlegers, and suppose that k =
S0 2Tt Then there exists a self-complementary k-hypergraph of order n if
and only if njgerriay < k.

Proof: Suppose that there exists a self-complementary k-hypergraph of order
n, and let b be the binary representation of k. Then

supp(b) ={6, L+ 1,...,0+r},
and so Corollary 3.2 guarantees that
npgerit1) < Kjgeriv, (7)
for some j € {0,1,2,...,r}. If (7) holds for some j < r, then the fact that
e+ G+ < ottitl 4 N[ge+i+1]

implies that ‘
Nge+Gro+) < PSRRI kgetit). (8)

NOW since 2é+j+1 + k[2I+j+1] = 2€+j+1 + Zg:o 2€+i = k[22+(j+1)+1], (8) implies
that
Nge+G+n+1] < k[21+<1+1>+1],

and hence (7) also holds for j + 1. Thus, by induction on j, the fact that
(7) holds for some j € {0,1,...,r} implies that (7) holds for j = r. Hence
Ngerr1] < k[22+7‘+1] =k.

Conversely, Corollary 3.2 guarantees that there exists a self-complementary

k-hypergraph of order n for every integer n such that njgetri1) < kjgetria) =
k.

Corollary 3.5. Let { be a positive integer and suppose that k = 2¢ — 1. There
erists a self-complementary k-hypergraph of order n if and only if npe < k.

Proof: Sincek =2/—1= Zf;é 2%, this follows directly from Corollary 3.4. O



4 Generating self-complementary hypergraphs

We will describe a simple algorithm which takes a k-complementing permu-
tation in Sym(V) as input, and returns the set Hy of all self-complementary
k-hypergraphs X on V that have 6 as an antimorphism. This algorithm was
previously described by Sachs [5] and Ringel [4] for & = 2, by Suprunenko [6]
for k = 2,3, and by Szymariski [7] for k¥ = 3,4. From each orbit A, A%, A92, .
of & on V(®), we either take the alternating k-sets A4, A%°, A" ... for X, or the
alternating k-sets A? A‘)S7 A95, ... for X. Then within each orbit, § maps edges
of X onto non-edges of X, and vice-versa. If there are m orbits of § on V¥),
we can use this method to generate the set Hy of all 2™ self-complementary k-
hypergraphs on V for which 6 is an antimorphism. Lemma 3.1 guarantees that
every self-complementary k-hypergraphs has an antimorphism which has order a
power of 2, and so we can generate all of the self-complementary k-hypergraphs
of order n, up to isomorphism, by applying this simple algorithm to find Hy for
every permutation 6 in Sym(n) satisfying the conditions of Theorem 2.2. More-
over, if we just wish to generate at least one representative of each isomorphism
class of self-complementary k-hypergraphs of order n, it suffices to apply this
algorithm to one permutation 6 from each conjugacy class of permutations in
Sym(n) satisfying the conditions of Theorem 2.2.

A Appendix

In Lemma A.1, we will show directly that the necessary and sufficient condition
(6) of Corollary 3.2 on the order n of a self-complementary k-hypergraph is
equivalent to Szymariski and Wojda’s condition that (Z) is even. First we will
need some notation.

For positive integers m and n, recall that n,) denotes the unique integer
in {0,1,...,m — 1} such that n = np,)(mod m). Let [%} denote the quotient
upon division of n by m. Finally, for any prime number p, let n(,) denote the
largest integer ¢ such that p* divides n.

It is well known that for any positive integer m and prime number p, we

have
m

r>1

(2), = G,

=mlp) —nlp) = (m—n)ly)

- F o

It follows that

10



We can evaluate each term in the sum above using the well-known fact that
m|_|n|_|m=-n| _ 1 ifm[pr}'< pr) (10)
" p" " 0 otherwise

Lemma A.1.

Let k and n be positive integers, k < n, and let b be the binary representation

of k. Then (Z) is even if and only if

npaet1] < kpge1y for some € € supp(b). (11)

Proof: Observe that (}) is even if and only if (}) ,, > 1. By (9) we have

(2)

(1) Sl ][5y w2

By (10), for each r > 1 we have

{n}_[k}_{n—k} . 1 ifn[Qr]<k[2r]
27 27 2r 10 otherwise .

Hence (12) implies that (}) is even if and only if

nygr] < kpgrp  for some r > 1,
that is, if and only if
T[ge+1] < ]{?[22+1] for some ¢ > 0. (13)

Now we will show that the condition in (13) holds for some ¢ > 0 if and only
if it holds for some ¢ € supp(b). If (13) holds for some ¢ € supp(b), then (13)
certainly holds for some ¢ > 0. Conversely, assume for the sake of contradiction
that the condition in (13) does not hold for any ¢ € supp(b), but it holds for
some £ ¢ supp(b). Now if i & supp(b) for all i such that 0 <7 </, then kjges1) =
Ef:o bi2" = 0, and so (13) implies that npe+1; < 0, giving a contradiction.
Hence there must exist a nonnegative integer ¢ < £ such that i € supp(b). Let

£, denote the largest such integer i. Then kjpe41) = Ze*

i=0 bl2l = k[2£*+1], and so
(13) implies that

nge+1) < k[2£*+1]. (14)
Since £, < £, we have ne.+1] < npgetr), and so (14) implies that
Nyget1] < k[2£*+1].

Hence ¢, € supp(b) and (13) holds for £, contradicting our assumption. We
conclude that (13) holds if and only if njet1) < kpaet1y for some £ € supp(b),
and thus (}) is even if and only if (11) holds. O

11
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