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Abstract

For an integer n and a prime p, let n(,) = max{i : p’ divides n}. In this
paper, we present a construction for vertex-transitive self-complementary
k-uniform hypergraphs of order n for each integer n such that p"®» =
1 (mod 2°T") for every prime p, where £ = max{k), (k — 1)(2)} and con-
sequently we prove that the necessary conditions on the order of vertex-
transitive self-complementary uniform hypergraphs of rank k = 2° or
k = 2° 4+ 1 due to Potoiick and §ajna are sufficient. In addition, we use
Burnside’s characterization of transitive groups of prime degree to charac-
terize the structure of vertex-transitive self-complementary k-hypergraphs
which have prime order p in the case where k = 2° or k = 2° + 1 and
p =1 (mod 271, and we present an algorithm to generate all of these
structures. We obtain a bound on the number of distinct vertex-transitive
self-complementary graphs of prime order p = 1 (mod 4), up to isomor-
phism.

Key words: Self-complementary hypergraph; Uniform hypergraph; Transitive hyper-
graph; Complementing permutation; Large set of t-designs
AMS Subject Classification Codes: 05C65, 05B05 05E20, 05C85.

1 Introduction

1.1 Definitions

For a finite set V and a positive integer k, let V*) denote the set of all k-subsets
of V. A hypergraph with vertex set V and edge set F is a pair (V, E), in which
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V is a finite set and E is a collection of subsets of V. A hypergraph (V, E) is
called k-uniform (or a k-hypergraph) if E is a subset of V(*), The parameters
k and |V] are called the rank and the order of the k-hypergraph, respectively.
The vertex set and the edge set of a hypergraph X will often be denoted by
V(X) and E(X), respectively. Note that a 2-hypergraph is a graph.

An isomorphism between k-hypergraphs X and X' is a bijection ¢ : V(X) —
V(X') which induces a bijection from E(X) to E(X’). If such an isomorphism
exists the hypergraphs X and X’ are said to be isomorphic. An automorphism
of X is an isomorphism from X to X. The set of all automorphisms of X
will be denoted by Aut(X). Clearly, Aut(X) is a subgroup of Sym(V (X)), the
symmetric group of permutations on V(X).

The complement X© of a k-hypergraph X = (V,E) is the hypergraph
with vertex set V and edge set V(¥ \ E. A k-hypergraph X is called self-
complementary if it is isomorphic to its complement. An isomorphism between
a self-complementary k-hypergraph X = (V, E) and its complement X is called
an antimorphism of X. The set of all antimorphisms of X will be denoted by
Ant(X). Tt is easy to check that Aut(X) U Ant(X) is a subgroup of Sym(V),
and that Aut(X) is an index-2 subgroup of Aut(X)U Ant(X). Also, it is clear
that Aut(X) = Aut(X®) when X is self-complementary.

Let X = (V,E) be a k-hypergraph, let ¢t be a positive integer. A k-
hypergraph X is called t-subset-regularif the there is a constant ¢ such that every
t-subset of V is contained in exactly ¢ edges in E. A k-hypergraph X is called
vertex-transitive (or simple transitive) if Aut(X) acts transitively on V(X), and
it is called doubly-transitive if Aut(X) acts transitively on the set of ordered
pairs of distinct vertices of X. Clearly, every vertex-transitive k-hypergraph is
1-subset-regular and every doubly-transitive k-hypergraph is 2-subset-regular.

1.2 Connection to design theory

There is a connection between ¢-subset-regular hypergraphs and designs. Hence
results from design theory are applicable to these hypergraphs and vice versa.
A t-(n,k,\) design is a pair (V,B) in which V is a set of cardinality n and B
is a collection of k-subsets of a point set V', such that every t-subset of V is
contained in exactly A elements of B. Hence a t-subset-regular k-hypergraph X
of order n is a t-(n, k, A) design in which X is equal to the t-valency of X. A large
set of t-(n,k, \) designs of size N, denoted by LS[N](t, k,n), is a partition of
the complete design V*) into N disjoint ¢-(n, k, \) designs, where A = (}_f)/N.
If a t-subset regular k-hypergraph X of order n is self-complementary, then X
and its complement X are both ¢-(n, k, \) designs with A = (}~)/2. Hence
the pair {X, X} is an LS[2](t,k,n) in which the t-designs are isomorphic.
If X is vertex-transitive or doubly-transitive, then the corresponding t-design
is point-transitive or 2-point-transitive, respectively. Hence vertex-transitive
self-complementary k-hypergraphs of order n correspond bijectively to large
sets of t-designs LS[2](t,k,n) for some ¢ > 1 in which the ¢-designs are point-
transitive and isomorphic. Large sets of t-designs are very important structures
in combinatorial design theory, and their construction forms a crucial part of



Teirlink’s remarkable proof in [9] of the existence of t-designs for all ¢. Large
sets of t-designs also have useful applications in cryptography, which is essential
to the security of communication networks and, consequently, they have been
studied extensively. The results to date have been compiled efficiently in [1,
pp.98-101]. Some sufficient conditions on the order of large sets in which the
t-designs have a common automorphism group have been obtained but, to date,
few large sets of isomorphic t-designs have been constructed. The results of this
paper imply the corresponding results in design theory.

In this paper, we will use terminology from hypergraph theory, rather than
design theory.

1.3 Notation

We will make use of the following notation. For a positive integer n and a prime
p, let n(,) denote the greatest integer r such that p” divides n. If © is a finite
set, v is a point in €2, 7 is a permutation on 2, G is a permutation group on €2,
and p is a prime, then v™,v%, G, and 77'G7 will denote the image of v by 7,
the orbit of G containing v, the stabilizer of the point v in the group G, and the
conjugate of G by 7, respectively. For finite sets U and V', and any permutation
a € Sym(U) and B € Sym(V), the permutation a x § € Sym(U x V') is defined
by (u,v)**# = (u®,v?), for all (u,v) € U x V.

1.4 Necessary conditions on order

The following result is actually a corollary to a more general result due to
Khosrovshahi and Tayfeh-Rezaie in [4], which gives necessary conditions on the
order of large sets of ¢-designs, and it was first noted by Poto¢nik and Sajna in

[7].

Theorem 1.1. [7] Suppose that k = 2° or k = 2°+1 for some positive integer (,
and that X is a self-complementary k-hypergraph of order n. Let t be a positive
integer such that 1 < t < k. If X is t-subset regular, then n = j (mod 2*1)
for some j € {t,t+1,...,k—1}.

Since vertex-transitive self-complementary k-hypergraphs are necessarily 1-
subset-regular, we can use Theorem 1.1 to find basic necessary conditions on
their order in the case where k = 2¢ or k = 2¢ + 1. However, the following result
due to Poto¢énik and Sajna [7] shows that the condition of transitivity implies
stronger necessary conditions on the order of these structures in the case where
n =1 (mod 2¢+1).

Theorem 1.2. [7] Let £ be a positive integer, let k = 2° or k = 2 + 1, and
let n = 1 (mod 2°11). If there exists a vertea-transitive self-complementary
k-hypergraph of order n, then

p"® =1 (mod 2°7Y)  for every prime p.



It has been shown that the necessary conditions of Theorem 1.2 are sufficient
in the case where k = 2 [8], k = 3 and n is odd [7], and where n is a prime power
[7]- In Section 2, we will present a construction to prove that the necessary condi-
tions of Theorem 1.2 are sufficient in all cases. In Section 3, we will characterize
the structure of vertex-transitive self-complementary k-hypergraphs which have
prime order p in the cases where k = 2¢ or k = 2¢ + 1, and p = 1(mod 2/t1).

2 Constructions

We begin with a construction of vertex-transitive self-complementary uniform
hypergraphs of prime power order. If I is a finite field and a4, as,...,a; € F,
the Van der Monde determinant of ay,as, ..., ax is defined as VM (aq,...,a;) =
Hi>j(ai — aj).
Construction 2.1. Paley k-uniform hypergraph
Let k be an integer, k > 2, and let q be a prime power such that ¢ = 1(mod
2071), where ¢ = max{k(), (k — 1)(2)}. Let r be a divisor of the integer (q —
1)/2Y. Let g be the field of order q, let w be a generator of the multiplicative
group Fp, and let ¢ = ged(n — 1,r(§)). Fori=0,1,...,2c — 1, let F; denote
the coset w' <w2r(g)> in F,. Finally, define Py, to be the k-hypergraph with
vertex set
V(Pykr) =Ty,

and edge set

E(Pyiy) = {{a1,...,ax} €FP : VM(ay,...,ax) € FyU-- U F._1}.

It should be noted that Potoénik and Sajna first introduced Construction 2.1
[7] with r = 1. Their construction was in turn an extension of the well-known
construction of Paley graphs, which can be found in Rao [8]. The extension to
Paley 3-hypergraphs with » = 1 had been previously introduced by Kocay in
[5]. Peisert also presented this construction in [6] in the case where k = 2 and
r is any divisor of (¢ —1)/4.

Lemma 2.2. The Paley k-hypergraph Py, defined in Construction 2.1 is a
vertex-transitive and self-complementary k-hypergraph.

Proof: Since 7 divides (¢ — 1)/2*!, we have ¢ — 1 = 2¢+1rt for some positive
integer t. Let d be the order of W (@) in Fy. Then
_ ¢—1
B ged(q — l,r(g)).
First consider the case when k is even. Then k = 2k for k’ odd. Hence
ol+1,p ol+14
4= da T, vk = 1)/2) ~ ged(201t, 20K/ (k — 1)/2)

2€+1t t
= = 4 .
2cd (26711, 201k (k — 1)) < god (4, k' (k — 1)))



Since k&’ and k — 1 are both odd integers, ged(4¢, k'(k — 1)) is a divisor of ¢, and
so t/ged(4t, k' (k — 1)) is an integer. Thus d is divisible by 4 when k is even.
Now suppose that k is odd. Then k — 1 = 2k’ where k' is odd. We similarly
obtain

d=4 (gcd(éé, k:k:’)) ’ @

and since k and k' are both odd, it follows that d is divisible by 4 when k is odd
also.
Thus d is divisible by 4, and consequently the subgroup <w2r(§)> is of even

order and even index in F. Hence —1 € <w2r(’2€)>, and so the edge set of Py i
is well defined. Also, the sets

c—1

2= Yo (o) - UF

and
2¢—1

1. c—lwi (%) wzr(,’;) _ z‘:wT(g)
A L:JO + < > L:JF A

partition F7.
Define a bijection ¢ : F, — F, by a? := w"a, for all a € F,. Observe that
for any k-subset {a1,...ax} € Fék), we have

VMW ar,. .. ,w"ar) = )V M(a,. .. ar) = w" GOV M(ay, ... ax).

Thus ¢ induces a mapping from A to A, and hence from E(P, 1., to E(ch’k’r) =

ng) \ E(P, k). Thus ¢ is an antimorphism of P, ,, and so Py, is a self-
complementary k-hypergraph.

To see that P, 1, is vertex-transitive, it suffices to show that an automor-
phism can map 0 to any other vertex. For any a € F,, the bijection o : F;, — F,
defined by y* =y + a, for all y € F,;, maps 0 to a. Since

VM(a1+a,...,ap +a) =VM(aq,...,ax),

the bijection « is an automorphism of P, ,, and so Py, is vertex-transitive.
O

In Section 3 we will use results from group theory to find the complete
automorphism group of the Paley k-hypergraph P(q, k,r) of Construction 2.1,
in the case where ¢ is prime and k = 2¢ or k = 2¢ + 1.

Lemma 2.2 shows that the converse of Theorem 1.2 holds when n is a prime
power. We now generalize Construction 2.1 and prove that the converse of
Theorem 1.2 is true in all cases.



Construction 2.3. Let k be an integer, k > 2, and let n be a positive integer
such that
p"® =1 (mod 2“1) for every prime p,

where ( is the largest positive integer such that 2¢ divides a positive integer m
with m < k. Let n = p{'p5?---pit be the unique prime factorization of n,
where p; is prime, a; > 1 and p1 < pa < ... < p;. For eachi€ {1,2,...,t}, let
q; = p$, let r; be a divisor of the integer (¢;—1)/2F1, and let r = (r1,72,..., 7).
Let By, denote the field of order g;.
Let
V=F, xFg x...xF, | xTF,.

Define a mapping ¢ : V¥ — Zy by
C({.Tl,xg, s 7l‘k}) =

0 if{xlj,ng,.. xk]}EE( qj,m,r; )
where j =min{i : 1 <@ <t and |[{x1;, voi, ..., T3} > 1}
and m = {15, 25, ..., Tij }|.

1 otherwise.

Now define X,, i to be the k-hypergraph with vertex set V and edge set

E={{z1,22,...,21} € vk C({x1,x9,...,21}) = 0}.

Note that when t = 1 and n = ¢ = p{* is a prime power congruent to 1
modulo 2“1, the k-hypergraph X, i, of Construction 2.3 is the same as the
k-hypergraph P, 1, given by Construction 2.1.

Lemma 2.4. The k-hypergraph X, i, defined in Construction 2.3 is vertez-
transitive and self-complementary.

Proof: Since p"®» =1 (mod 2°F1!) for every prime p, it follows that for each
i, ¢ = 1 (mod 2°t1), and hence ¢; = 1 (mod 2°*1) for all b < ¢. Now by
definition, £ = max{/,, : 1 <m < k} where {,,, = max{mq), (m —1)(2)}. Hence
¢ =1 (mod 2t»F1) for 1 < m < k, and s0 Py, ., is well-defined for 1 <i <t
and 1 < m < k. Thus the edges of X,, i, are well-defined.

Let F;. denote the (cyclic) multlphcatlve group of non-zero elements in F,,
and let w; be a generator of F} . For each 1 <14 <, define a bijection ¢; : Fy, —
F,, by a® = wia, for all a 6 F,.. Then ¢; € Ant(Py, .m n) for 1 <m <k, so
it follows from the definition of X, i, that ¢1 X ¢o X -+ x ¢y € Ant(Xy, g r)-
Hence X, ., is self-complementary.

To see that X, 1, is vertex-transitive, it suffices to show that an automor-
phism can map the vertex 0 := (0,0,...,0) to any other vertex. For 1 <i <t
and for any x; € Fg,, the bijection oy, : Fy, — Iy, defined by y* = y+x;, for all
y € Fy,, maps 0 to x;. Moreover, a,, preserves the Van der Monde determinant
of any m pairwise distinct elements in [y, and hence a,, is an automorphism
of Py, pmr;, for 1 <m < k. Now let x = (z1,22,...,2¢) € V. It follows from the



definition of X, i » that ax = ag X ag, X -+ X g, € Aut(X, k). Since ax
maps 0 to x and x was an arbitrary element of V, it follows that Aut(X,, k)
acts transitively on V', and so X, i, is vertex-transitive. ]

Theorem 2.5. Let ¢ be a positive integer, let k = 2° or k = 2° + 1, and
let n = 1 (mod 2°TY). There exists a vertea-transitive self-complementary k-
hypergraph of order n if and only if

p"@ = 1(mod 2°t1)  for every prime p. (2)

Proof: The necessity of condition (2) follows directly from Theorem 1.2. Since
k=2%or k = 2° +1, for any integer m such that 1 < m < k, £ is greater than or
equal to the largest integer ¢ such that 2° divides m. Thus k, £, and n satisfy the
hypotheses of Construction 2.3, and so the sufficiency of condition (2) follows
from Lemma 2.4. O

3 Vertex-transitive self-complementary uniform
hypergraphs of prime order

3.1 Preliminaries - some group theory

In Section 3.3, we will characterize the vertex-transitive self-complementary k-
hypergraphs of prime order p in the cases where k = 2¢ or &k = 2 + 1 and
p = 1(mod2*t1). To do this, we will require some results from group theory.

For a prime power ¢, let F denote the multiplicative group of units of the
finite field F, of order ¢. Given a € Fy and b € F, define the mapping 75, by
Tap 1 * — ax +b. One can show that T, ; is a permutation of Fy, and that
{Tup:ac F,, b€ F,} is a group, called the affine linear group of permutations
acting on F,. This group will be denoted by AGL1(g). If a H is a subgroup
of a group G, we will denote this by H < G. If H and G are equivalent as
permutation groups, we will denote this by H = G. A permutation group G
acting on a finite set € is sharply transitive if for any two points a, 5 € €,
there is exactly one permutation g € G such that a9 = (3. The group G is
sharply doubly-transitive if G is sharply transitive in its action on ordered pairs
of distinct elements from 2.

The following two theorems due to Burnside [10] and Zassenhaus [11] restrict
the automorphism group of a vertex-transitive k-hypergraph of prime order.

Theorem 3.1. (Burnside [10]) If G is a transitive permutation group acting
on a prime number p of elements, then either G is doubly-transitive or

G={T,p:ac HLF;,6 beF,}

p

Theorem 3.2. (Zassenhaus [11, 3]) A sharply doubly-transitive permutation
group of prime degree p is equivalent as a permutation group to AGLq(p).



We will also require the following useful and well-known counting tool, called
the Orbit-Stabilizer lemma.

Lemma 3.3. (Orbit-stabilizer [10]) Let G be a permutation group acting on
V and let x be a point in V. Then |G| = |G.||z%|.

3.2 Complementing permutations

In some of the literature (eg. [5]), a permutation which is an antimorphism of a
self-complementary k-hypergraph is called a k-complementing permutation, and
we have the following natural characterization.

Lemma 3.4. [5]

A permutation 0 on V is a k-complementing permutation
= AY £ A VAcV® VY odd,
<= the sequence A, AG,A92, Aeg, ... has even length, ¥V A € 17428

If 0 is a k-complementing permutation in Sym(V), the set of self-complementary
k-hypergraphs on V for which 6 is an antimorphism is called the -switching
class of self-complementary k-hypergraphs on V. Two self-complementary k-
hypergraphs in this #-switching class are said to be 8-switching equivalent.

We will require the following lemma due to Poto¢nik and Sajna. It is proved
within their proof of Theorem 1.2 in [7].

Lemma 3.5. [7] Let { be a positive integer, let k = 2° or k = 2° + 1, and
let n =1 (mod 2¢T1). Let Oy be the set of k-complementing permutations in
Sym(n) whose orders are powers of 2. Then every element of Oz has exactly
one fized point and all other orbits have length divisible by 2°F1.

3.3 A characterization

Now we are ready to characterize the vertex-transitive self-complementary k-
hypergraphs of prime order p in the cases where k = 2¢ or &k = 2¢ 4+ 1, and
p =1 (mod 2!). We begin by determining the set of possible automorphisms
and antimorphisms of these hypergraphs.

Lemma 3.6. Suppose k = 2° or k = 2 + 1. If X is a vertex-transitive self-
complementary k-hypergraph of prime order p =1 (mod 2*1), then Ant(X) U
Aut(X) is equivalent as a permutation group to a subgroup of AGL1(p). That
18

Ant(X)U Aut(X) ={Tup:a € G <TF, , beF,}.

Proof: Since X is vertex-transitive, Aut(X) and Ant(X) U Aut(X) are both
transitive permutation groups acting on a prime number of elements. Since
p =1 (mod 2+1), Theorem 1.1 implies that X is not doubly-transitive, and so
by Burnside’s Theorem,

Aut(X) ={Top:a € H<F,, beF,} (3)



for some subgroup H of F,. Now since AG'L;(p) is doubly-transitive and X is not
doubly-transitive, Aut(X) # AGL1(p). Hence H is a proper subgroup of [} in
Equation (3), and so |H| < 251, Thus |Aut(X)| = p|H| < % Since Aut(X)
is an index-2 subgroup of Aut(X) U Ant(X), we have |Aut(X) U |Ant(X)| =
2 Aut(X)[ < p(p — 1).

If Aut(X) U Ant(X) is not doubly-transitive, then the result follows from
Burnside’s Theorem 3.1. On the other hand, if Aut(X) U Ant(X) is doubly-
transitive, then certainly |Aut(X) U Ant(X)| > p(p — 1), which implies that
|Aut(X) U Ant(X)| = p(p — 1). Hence Aut(X) U Ant(X) must be sharply
doubly-transitive, and so in this case the result follows from Zassenhaus’ Theo-
rem 3.2. 0

In the next lemma, we completely determine the set of automorphisms and
antimorphisms of the Paley k-hypergraphs of Construction 2.1 which have prime
order.

Lemma 3.7. Let { be a positive integer. Suppose k = 2 or k = 2 + 1, and
q be a prime power such that ¢ = 1 (mod 2t1). Let r be a divisor of 5%11,
and let X = P, be the Paley k-hypergraph defined in Construction 2.1. Let

¢ =ged(q — 1,7“(];)).
(1) Let s be an integer such that s(g) is an odd multiple of c. Then

(a) (Tp2e 0,T11) < Aut(X).
(b) (Tps0,T11) < Aut(X) U Ant(X).

(2) <Tw27"0,T171> S Aut(X) and <Twr70,T1,1> S Aut(X) U Ant(X)
(8) If q is prime, then Aut(X)U Ant(X) = (T« o,T1,1), where

ws 00
' kY . .
s=ged|s:se{l,2,...,q—1},s 5 s a multiple of c | .

Proof:

(1) Suppose that s(%) = (2m + 1)c. First we will show that w'(5) 4 = A. Note
that w'F; = Flitj)ne- We have

c—1 c—1 c—1 2c—1
(k m c 1
Ww(G)A = U wmtlep — U Flit@m+1)e)pg = U Fige = U Fi=A
=0 i=0 =0 i=c

k _
Hence ws(2)A = A. This implies that, for any element z € Iy, we have

rTEA — w(QmH)S(;)z €A and w(zm)s(g)x cA

for every integer m.



(2)

(3)

(a) Now observe that for a k-subset {a1,as,...,a;} € ng), an integer m,
and an element b € F,, we have

k

VM (w?™a; +b,...,0" " ay +b) = (,._)(2’”)5(2)‘/M(a17 ey Q).

Thus the permutation 7},2ms ; maps the Van der Monde determinant of

an element of ng) from A to A, or from A to A. Tt follows that Tpoms
is an automorphism of X. Since m and b were chosen arbitrarily, we
conclude that (T2 o, T11) < Aut(X).

(b) Observe that for a k-subset {ai,...ar} € Iﬁ‘gk), an integer m, and an
element b € F,, we have

k
2

VM(w®™D3q, b, w4 p) = wC DGV M (ay, .. ap).

It follows that the permutation T, 2m+1)s ;, Maps the Van der Monde

determinant of an element of ng) from A to A, or vice versa. Hence
T yamsne  induces a mapping from E(X) to E(XY) = FY) \ B(X).
Thus T},2m+1)s 5, is an antimorphism of X. Since m and b were chosen

arbitrarily, we conclude that {7, cm+1sy, : m € Z, b € Fy} C Ant(X).

This implies that (T,s0,T1,1) < Aut(X) U Ant(X).

Observe that

r(3)

_ q—1 _q-1
ged(q — 1,r(§)) c
Since ¢ divides ¢—1, we also have |w°| = (¢—1)/c. Since the cyclic subgroup

of Fy of order (¢ — 1)/c is unique, it follows that <wr(;)> = (w). Thus

2

r(g) = me for an integer m such that ged((q¢ — 1)/¢,m) = 1. The proof of

Lemma 2.2 shows that (¢ — 1)/c is divisible by 4, and hence even, and thus
the integer m must be odd. Hence T(g) is an odd multiple of ¢, and so the
result follows from Part (1).

Let S = {s € {1,2,...,q— 1} : s(g) is a multiple of ¢}. Part (1) implies
that
<Tws’0’T171> S A’LLt(X) @] ATLt(X)

for all s € S. It follows that
{Tup:a€(w’:se8),belF,} <Aut(X)U Ant(X). (4)

But (w® : s € S) is a cyclic group generated by w® , where s’ = ged(s : s €
S). Hence (4) implies that

<Tw5170,T171> S A’U,t(X) U Ant(X)

Now if ¢ is prime, Lemma 3.6 implies that Aut(X)U Ant(X) < AGL1(q).
Thus it remains to show that if T, € Aut(X) U Ant(X), then a € (w* ).

10



Suppose that ¢ ¢ (w*). Now (w*) C (w*') for all s € S. If @ = w™ for an

integer m such that m(g) is a multiple of ¢, then a € S, and so a € (wsl>,
giving a contradiction. Hence a = w™ for an integer n such that n(g) is
not a multiple of c¢. Consequently w(3) A # A and w(3) A # A. Hence
Top & Aut(X) U Ant(X). It follows that (Aut(X)U Ant(X)) N AGL1(q) =

(T, 9, T1,1) and hence (Aut(X)U Ant(X)) = (T, o,T1,1), as claimed.
O

Theorem 3.8.

Suppose X = (V, E) is a vertez-transitive self-complementary k-hypergraph of
prime order p, where k = 2¢ or k = 2 + 1 and p = 1 (mod 21, Let w
be a generator of F,. Then X is isomorphic to a k-hypergraph Y with vertex
set By, for which Aut(Y') = (T 2r o, T1,1) < Aut(Ppi,r) and Ant(Y) U Aut(Y) =
(Twr 0, T1,1) < Ant(Py k) UAut(Py k), where r = p(p—1)/|Aut(X) U Ant(X)].
Consequently, Y is in the 0-switching class of Py, i for every permutation 6 €
{Tyrmp:m odd,b € Fp}.

Proof: By Lemma 3.6,
Ant(X)U Aut(X) ={Top:a € G <F,, beFp},
and Aut(X) is an index-2 subgroup of this group, so
Aut(X) ={Tup:ae€ K <F,, beF,},

where K is an index-2 subgroup of G. Thus there is ¢ : V — F, such that
Y = (¢(V),p(E)) satisfies

Ant(Y)U Aut(Y) ={T,p:a € G <F, , beF,},

and
Aut(Y) ={T,p:a € K<F,, beF,}.
Now |Ant(Y) U Aut(Y)]| is even, and its order divides p(p — 1). Since

. pp—1) _ p(p—1)
[Ant(Y) U Aut(Y)] — [Ant(X) U Aut(X))

and w is a generator of [y, it follows that the set G of multiplicative permutations
in Ant(Y)U Aut(Y) is (w"), and the set K of multiplicative automorphisms of
Y is <w2r>. If we can verify that r is a divisor of (5;11), then P, 1, exists and
Aut(Y) = (T,er gTh 1) < Aut(Pp,r) and Ant(Y) U Aut(Y) = (Tr0,T11) <
Ant(P, k) U Aut(Pp ). Consequently, Y is in the #-switching class of P, k. »
for every 0 € <Twr707T171> \ <Tw2r707T171> = {Tw’“m,b :m odd,b € Fp}

It remains to show that r = wa&()p+r)tt()<)l is a divisor of (p — 1)/2°*L.

First we will show that both of the integers p and 2° divide |Aut(Y)|. We
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have Aut(Y) = {Top : a € K < F) | b € F,}, which contains the subgroup
{T1 : b e F,} of order p, and so p divides |Aut(Y')|. Now let 6 € Ant(Y'). Then
6 has even order in Ant(Y) U Aut(Y), so |#] = 27s for some positive integer
j and some odd positive integer s. Now 6° € Ant(Y) and #° has order 27, so
Lemma 3.5 implies that 6° has exactly one fixed point, and all other orbits of
6° have length divisible by 2¢*'. Hence the order of the antimorphism 6° is
divisible by 2!, and so |Aut(Y) U Ant(Y)| = 2| Aut(Y)| is divisible by 2¢+1. It
follows that 2¢ divides |Aut(Y)|.
Now observe that

. p(p—1) B p(p—1) _ plp—1)2!
CJAu(X) U Ant(X)|  [Aut(Y)U Ant(Y)| 2| Aut(Y)[2¢+1
p—1 _, (Aut(Y)) .

20+1 p2€

=

(5)

Since |Aut(Y)| is divisible by the odd prime p, and |[Aut(Y)| is also divisible
by 2¢, it follows that ‘Aq;t% is an integer. Hence Equation (5) implies that r

divides the integer é%ll. This completes the proof. O

3.4 Generating transitive k-hypergraphs

In this section, we will present an algorithm for generating all vertex-transitive
self-complementary k-hypergraphs of prime order p =1 (mod 2!), when k =
2¢or k=2°+1.

Algorithm 3.9.
Let ¢ be a positive integer, and suppose that k = 2 or k = 2/ + 1. Let p be a
prime such that p = 1 (mod 2*1). Let w be a generator of Fy.

1. Choose a divisor r of (p — 1)/2"1 and let 6 = T,,- .

(a) Take an arbitrary uncolored element A of F;,k). In steps (i), (ii) and
(iii) below, we will find the orbit O4 of the group (T, 0,71 1) on ]FI(,k)
which contains A.

(i) Create a sequence of elements of F;,k)

A, A° A% A% A9

ey

Coloulr the elements of the form A%" red and those of the form
AP blue.

(ii) Repeat Step 1(a)(i) but replace A with the first element of ]F‘I(,k)
in the sequence

ATia ATE AT (6)

which is uncolored.
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(iii) Repeat Step 1(a)(ii) until all elements in the sequence (6) have
been colored.

(b) Repeat Step 1(a) until all of the elements of IF]([,k) have been colored.

(c) Let m be the number of orbits of the group (T,r0,71,1) on ]F]()k)
created in Step 1(a), and choose an ordering O4,,04,,...,04,, of
these orbits.

(i) Choose a vector v € Z3*, and let X be the k-hypergraph with
vertex set IF, and edge set I, where an edge e € Oy, is in F if
and only if e is red and v; = 1, or e is blue and v; = 0.

(ii) Repeat step 2(b)(i) for all vectors v € Z3".
2. Repeat step 1 for all divisors r of (p —1)/2¢%.

Theorem 3.10. Let ¢ be a positive integer, let k = 2¢ or k = 2° + 1, and let
p be a prime such that p =1 (mod 2°*1). Let X be a k-hypergraph of order p.
Then X is a vertex-transitive self-complementary if and only if X is isomorphic
to a k-hypergraph generated by Algorithm 3.9.

Proof: (=) Suppose that X is a vertex transitive self-complementary k-hy-
pergraph of order p. By Theorem 3.8, X is isomorphic to a k-hypergraph Y
with vertex set ), for which Aut(Y) = (T,,2r o, T1,1) < Aut(Pp ) and Ant(Y)U
Aut(Y) = (Tyr 0, Th 1) < Ant(Pp i r)UAUut(Pp kv ), where r = p(p—1) /| Aut(X)U
Ant(X)|. We will obtain Y from P, j , using Algorithm 3.9.

First we show that P, j , is generated by Algorithm 3.9. Let v € Z3* be the
vector such that v; = 1 if and only if A; € E(P, k), for all i € {1,2,...,m}.
Then P, 1, = XJ.

Now we will show how Y can be generated by Algorithm 3.9 from P, j .
Now Y is in the f-switching class of P, j , for every permutation 6 € {T,rm p :
m odd,b € F,}. In particular, Y is T, o-switching equivalent to P, . That
is, Y can be obtained from P, , by changing edges to nonedges, and vice

versa, in some collection S of orbits of T}, o on IF](jk). Moreover, since Aut(Y) =
(T2r 0, T 1), the collection S must also be equal to a union of orbits of (T2 o, T1,1)

on Fz(gk). Hence S is a union of orbits of (T,,r o, T,2r 0, T1,1) = (Twr,0,T1,1) on

IE‘Z(,k). This implies that Y can be obtained from P, , by changing edges to
nonedges, and vice versa, in a subset S of the orbits O4,,04,,...,04,, given
by Algorithm 3.9. Let w € Z3* be the vector such that w; = 1 if and only if
A; €S. Then Y = X7, . Since X £ Y, we have X = X and so X is

vt+w?r
isomorphic to a k-hypergraph generated by Algorithm 3.9.

(<) Suppose that X is a k-hypergraph of order p that is isomorphic to a k-
hypergraph generated by Algorithm 3.9. We will show that X is vertex transi-
tive and self-complementary. Now X = X" for some divisor r of (p — 1)/2¢+!
and some v € Z5', where m is the number of orbits of the group (T,,r o,T1,1) on

F;,k). The k-hypergraph X is constructed by choosing either the red or the blue
edges from each of the orbits in {O4,,04,,...,04,,}. Our coloring method in
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step 1(a) guarantees that each of the set of red edges and the set of blue edges
in Oy, constitutes an orbits of (7,2 0,71,1) on Fék), for all i € {1,2,...,m}.
This implies that (T,20,71,1) < Aut(X]). Since (T11) < (Ti20,71,1), and
(T1,1) acts transitively on F,, we conclude that Aut(X]) acts transitively on
V(X]) =TF,, and so X is vertex transitive. Our coloring method in step 1(a)
also guarantees that T, o maps red edges onto blue edges, and vice versa, in the
orbit Oy, for all i € {1,2,...,m}. This implies that T,, o € Ant(X)), and so
X, is self-complementary.

Hence X is a vertex transitive self-complementary k-hypergraph of order
p, and since X = X7 sois X. O

When k£ = 2 or k = 3, Theorem 1.1 guarantees that for every vertex-
transitive self-complementary k-hypergraph of prime order p, we must have
p = 1 (mod 4). Hence Algorithm 3.9 generates every vertex-transitive self-
complementary graph and 3-hypergraph of prime order.

Corollary 3.11. For any prime p =1 (mod 4), there are at most

Z 27“71
()

distinct vertex-transitive self-complementary graphs of order p, up to isomor-
phism.

Proof: Let r be a divisor of (p — 1)/4. Then ged(p — 1,7) = r. For each
i=0,1,....2r—1,let & = {e € F?) : VM(e) € wi{w?)}. We will prove that
each of the orbits of the group (T,r 0,71,1) on IF,(;Q) has the form &;UE; ., for some
i=20,1,...,7 — 1. For a given divisor r of (p — 1)/4, Algorithm 3.9 generates
at most 2™~ pairwise non-isomorphic graphs X with Aut(X) U Ant(X) =
(Twr 0,11,1), where m is the number of orbits of (T,,r 9,71,1) on IF;,Z). Finding
these orbits explicitly will lead us to conclude that m = r for each divisor r of
(p —1)/4, and so the result will follow.

Now each element of {T,,»m ; : m odd,b € F,} maps edges of & to edges of
Eitr, where addition of subscripts is addition modulo 2r. Also, each element of
G = (T,2r o, T1,1) maps edges of & to edges of &. This implies that each orbit
of (Tyr0,11,1) on IF](DQ) is contained in & U &, for some i € {0,1,...,r —1}.

Next we prove that (T, o,T%1,1) acts transitively on & U &4, for all ¢ =
0,1,...,r—1. It suffices to show that G = (T,,2r ¢, T1,1) acts transitively on the
set of edges &, for all ¢ =0,1,...,2r — 1. We have |G| = p(p — 1)/2r. Now fix
{z,y} € ]F;,Q). Recall that the group AGL4(p) acting on F, is sharply doubly
transitive. Since G < AGL;(p), it follows that at most two permutations in G
fix {x,y}. Hence by the orbit-stabilizer Lemma 3.3, we obtain

{a, Y4 = 1GI/1G 23| 2 |GI/2 = p(p — 1) /4r. (7)

Also, for integers ¢ and j such that 0 < 4,5 < 2r — 1, we have |§;| = |&;|. This
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implies that each of the edge sets &; has size
&l = [FD]/2r = p(p — 1) /4r. (8)
Now (7) and (8) together imply that
{x, 9y} > |&], forallie{0,1,...,2r —1}. (9)

Since each orbit of G on IF,(;Q) is contained in &; for some 4, and (9) implies that
each orbit of G on IF,(,Q) has cardinality at least |&;| for all 4, it follows that each
orbit of G on IF,(72) is equal to &; for some i. Hence G acts transitively on the
set of edges &;, for all i = 0,1,...,2r — 1. This implies that (T,,r o, T1,1) acts
transitively on & U &4, for all i =0,1,...,2r — 1.

Since each orbit of (T, 0,T1,1) is contained in & U &4, for some i, the
fact that (T, o,T1,1) acts transitively on & U &4, implies that each orbit of
(Twr 0,T1,1) on IF‘Z(?) is equal to & U &; 4, for some ¢ = 0,1,...,r — 1. There are
exactly r such orbits, and so m = r in step 1(c) of Algorithm 3.9. Thus for
each divisor r of (p — 1)/4, Algorithm 3.9 generates exactly |Z5| = 2" vertex
transitive self-complementary graphs of order p. Now every graph generated by
the algorithm is isomorphic to its complement, which is also generated by the
algorithm. It follows that there are at most

Z gr—1

—1
TP

distinct vertex transitive self-complementary graphs of order p, up to isomor-
phism. U

4 Open Problems

When neither k& nor k — 1 is a power of 2, not much is known about the order of
vertex-transitive k-uniform hypergraphs. However, using Burnside’s Theorem,
one may solve the following problem by examining the structure of doubly-
transitive permutation groups.

Problem 4.1. Let p be prime, and let k be a positive integer, k < p—1. Char-
acterize the structure of vertex-transitive self-complementary k-uniform hyper-
graphs of order p.

In [2], Dobson proved the following analogue to Burnside’s characterization
of transitive groups of prime degree, for transitive groups of prime power degree.

Theorem 4.2. [2] A transitive group of odd prime-power degree such that ev-
ery minimal transitive subgroup is cyclic is either doubly transitive (and hence
known) or contains a normal Sylow p-subgroup.
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One may use Dobson’s theorem to prove an analogue to Theorem 3.8 for
uniform hypergraphs of prime power order. The author poses the following
problem.

Problem 4.3. Characterize the structure of vertex-transitive self-complementary
k-uniform hypergraphs of prime power order.

In the case where the rank k = 2¢ or k = 2° + 1, and the order n = p" =
1 (mod 2*1), Theorem 1.1 implies that such a k-hypergraph X cannot be
doubly-transitive, and so if the automorphism group of X contains a cycle of
length p", then it contains a normal Sylow p-subgroup. Examining the structure
of such groups may lead to a partial solution to Problem 4.3.
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