Afficher la notice abrégée

dc.contributor.authorCurrie, James
dc.contributor.authorRampersad, Narad
dc.date.accessioned2018-03-01T20:12:37Z
dc.date.available2018-03-01T20:12:37Z
dc.date.issued2010
dc.identifier.citationCurrie, James, and Narad Rampersad. "Infinite words containing squares at every position." RAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications 44(1) (2010): 113-124. DOI: 10.1051/ita/2010007.en_US
dc.identifier.issn0988-3754
dc.identifier.urihttp://hdl.handle.net/10680/1370
dc.descriptionen_US
dc.description.abstractRichomme asked the following question: what is the infimum of the real numbers α > 2 such that there exists an infinite word that avoids α-powers but contains arbitrarily large squares beginning at every position? We resolve this question in the case of a binary alphabet by showing that the answer is α = 7/3.en_US
dc.description.sponsorshipThe first author is supported by an NSERC Discovery Grant. The second author is supported by an NSERC Postdoctoral Fellowship.
dc.description.urihttps://www.rairo-ita.org/articles/ita/abs/2010/01/ita09038/ita09038.html
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectInfinite wordsen_US
dc.subjectPower-free wordsen_US
dc.subjectSquaresen_US
dc.titleInfinite words containing squares at every positionen_US
dc.typeArticleen_US
dc.identifier.doi10.1051/ita/2010007


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée