dc.contributor.author | Currie, James | |
dc.contributor.author | Rampersad, Narad | |
dc.date.accessioned | 2018-03-01T20:12:37Z | |
dc.date.available | 2018-03-01T20:12:37Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Currie, James, and Narad Rampersad. "Infinite words containing squares at every position." RAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications 44(1) (2010): 113-124. DOI: 10.1051/ita/2010007. | en_US |
dc.identifier.issn | 0988-3754 | |
dc.identifier.uri | http://hdl.handle.net/10680/1370 | |
dc.description | | en_US |
dc.description.abstract | Richomme asked the following question: what is the infimum of the real numbers α > 2 such that there exists an infinite word that avoids α-powers but contains arbitrarily large squares beginning at every position? We resolve this question in the case of a binary alphabet by showing that the answer is α = 7/3. | en_US |
dc.description.sponsorship | The first author is supported by an NSERC Discovery Grant. The second author is supported by an NSERC Postdoctoral Fellowship. | |
dc.description.uri | https://www.rairo-ita.org/articles/ita/abs/2010/01/ita09038/ita09038.html | |
dc.language.iso | en | en_US |
dc.publisher | EDP Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Infinite words | en_US |
dc.subject | Power-free words | en_US |
dc.subject | Squares | en_US |
dc.title | Infinite words containing squares at every position | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1051/ita/2010007 | |