Show simple item record

dc.contributor.authorLacroix, Anne
dc.contributor.authorRampersad, Narad
dc.date.accessioned2018-03-16T14:27:01Z
dc.date.available2018-03-16T14:27:01Z
dc.date.issued2013
dc.identifier.citationLacroix, Anne, and Narad Rampersad. “Automaticity of primitive words and irreducible polynomials.” Discrete Mathematics and Theoretical Computer Science 15(1) (2013): 29-36.en_US
dc.identifier.issn1462-7264
dc.identifier.urihttp://hdl.handle.net/10680/1409
dc.description.abstractIf L is a language, the automaticity function AL(n) (resp. NL(n)) of L counts the number of states of a smallest deterministic (resp. non-deterministic) finite automaton that accepts a language that agrees with L on all inputs of length at most n. We provide bounds for the automaticity of the language of primitive words and the language of unbordered words over a k-letter alphabet. We also give a bound for the automaticity of the language of base-b representations of the irreducible polynomials over a finite field. This latter result is analogous to a result of Shallit concerning the base-k representations of the set of prime numbers.en_US
dc.description.urihttps://hal.archives-ouvertes.fr/hal-00990604v1
dc.language.isoenen_US
dc.publisherDiscrete Mathematics and Theoretical Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectautomaticityen_US
dc.subjectprimitive word
dc.subjectunbordered word
dc.subjectirreducible polynomial
dc.titleAutomaticity of Primitive Words and Irreducible Polynomialsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record