dc.contributor.author | Lacroix, Anne | |
dc.contributor.author | Rampersad, Narad | |
dc.date.accessioned | 2018-03-16T14:27:01Z | |
dc.date.available | 2018-03-16T14:27:01Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Lacroix, Anne, and Narad Rampersad. “Automaticity of primitive words and irreducible polynomials.” Discrete Mathematics and Theoretical Computer Science 15(1) (2013): 29-36. | en_US |
dc.identifier.issn | 1462-7264 | |
dc.identifier.uri | http://hdl.handle.net/10680/1409 | |
dc.description.abstract | If L is a language, the automaticity function AL(n) (resp. NL(n)) of L counts the number of states of a smallest deterministic (resp. non-deterministic) finite automaton that accepts a language that agrees with L on all inputs of length at most n. We provide bounds for the automaticity of the language of primitive words and the language of unbordered words over a k-letter alphabet. We also give a bound for the automaticity of the language of base-b representations of the irreducible polynomials over a finite field. This latter result is analogous to a result of Shallit concerning the base-k representations of the set of prime numbers. | en_US |
dc.description.uri | https://hal.archives-ouvertes.fr/hal-00990604v1 | |
dc.language.iso | en | en_US |
dc.publisher | Discrete Mathematics and Theoretical Computer Science | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | automaticity | en_US |
dc.subject | primitive word | |
dc.subject | unbordered word | |
dc.subject | irreducible polynomial | |
dc.title | Automaticity of Primitive Words and Irreducible Polynomials | en_US |
dc.type | Article | en_US |