dc.contributor.author | Charlier, Émilie | |
dc.contributor.author | Lacroix, Anne | |
dc.contributor.author | Rampersad, Narad | |
dc.date.accessioned | 2018-03-16T15:09:15Z | |
dc.date.available | 2018-03-16T15:09:15Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Charlier, É., A. Lacroix, and N. Rampersad. “Multi-dimensional sets recognizable in all abstract numeration systems.” Theor. Inform. Appl. 46 (2012), 51-65. DOI: 10.1051/ita/2011112. | en_US |
dc.identifier.issn | 0988-3754 | |
dc.identifier.uri | http://hdl.handle.net/10680/1411 | |
dc.description.abstract | We prove that the subsets of Nd that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting. | en_US |
dc.description.uri | https://www.rairo-ita.org/10.1051/ita/2011112 | |
dc.language.iso | en | en_US |
dc.publisher | EDP Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Finite automata | en_US |
dc.subject | numeration systems | |
dc.subject | recognizable sets of integers | |
dc.subject | multi-dimensional setting | |
dc.title | Multi-dimensional sets recognizable in all abstract numeration systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1051/ita/2011112 | |