Afficher la notice abrégée

dc.contributor.authorCurrie, J.
dc.contributor.authorBendor-Samuel, A.
dc.date.accessioned2019-06-19T14:00:49Z
dc.date.available2019-06-19T14:00:49Z
dc.date.issued1992-06-01
dc.identifier.citationCurrie, J., and A. Bendor-Samuel. "Words without Near-Repetitions." Canadian Mathematical Bulletin 35(2) (1 June 1992): 161-166. DOI: 10.4153/CMB-1992-023-6.en_US
dc.identifier.issn0008-4395
dc.identifier.urihttp://hdl.handle.net/10680/1697
dc.description.abstractWe find an infinite word w on four symbols with the following property: Two occurrences of any block in w must be separated by more than the length of the block. That is, in any subword of w of the form xyx, the length of y is greater than the length of x. This answers a question of C. Edmunds connected to the Burnside problem for groups.en_US
dc.description.sponsorshipThe research of the first author was supported by an NSERC Operating Grant. The second author was supported by an NSERC Undergraduate Summer Research Award.en_US
dc.description.urihttps://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/words-without-nearrepetitions/F86509D865F222F1FC63ACA8545C069Een_US
dc.language.isoenen_US
dc.publisherCanadian Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInfinite wordsen_US
dc.subjectPattern avoidance
dc.titleWords without Near-Repetitionsen_US
dc.typeArticleen_US
dc.identifier.doi10.4153/CMB-1992-023-6en_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée