Show simple item record

dc.contributor.authorCurrie, James D.
dc.contributor.authorRampersad, Narad
dc.contributor.authorSaari, Kalle
dc.date.accessioned2019-06-19T15:34:24Z
dc.date.available2019-06-19T15:34:24Z
dc.date.issued2015-09
dc.identifier.citationCurrie, James D., Narad Rampersad, and Kalle Saari. "Suffix conjugates for a class of morphic subshifts." Ergodic Theory and Dynamical Systems 35(6) (September 2015): 1767-1782. DOI: 10.1017/etds.2014.5.en_US
dc.identifier.issn0143-3857
dc.identifier.urihttp://hdl.handle.net/10680/1703
dc.description.abstractLet A be a finite alphabet and f: A^* --> A^* be a morphism with an iterative fixed point f^\omega(\alpha), where \alpha{} is in A. Consider the subshift (X, T), where X is the shift orbit closure of f^\omega(\alpha) and T: X --> X is the shift map. Let S be a finite alphabet that is in bijective correspondence via a mapping c with the set of nonempty suffixes of the images f(a) for a in A. Let calS be a subset S^N be the set of infinite words s = (s_n)_{n\geq 0} such that \pi(s):= c(s_0)f(c(s_1)) f^2(c(s_2))... is in X. We show that if f is primitive and f(A) is a suffix code, then there exists a mapping H: calS --> calS such that (calS, H) is a topological dynamical system and \pi: (calS, H) --> (X, T) is a conjugacy; we call (calS, H) the suffix conjugate of (X, T). In the special case when f is the Fibonacci or the Thue-Morse morphism, we show that the subshift (calS, T) is sofic, that is, the language of calS is regular.en_US
dc.description.urihttps://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/suffix-conjugates-for-a-class-of-morphic-subshifts/A531E7B26F382EDAF8455382C9C1DC9Aen_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSuffix conjugates for a class of morphic subshiftsen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/etds.2014.5en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record