Automated LULC Map Production using Deep Neural Networks
Metadata
Show full item recordAuthor
Henry, Christopher J.
Storie, Christopher
Palaniappan, Muthu
Alhassan, Victor
Swamy, Mallikarjun
Aleshinloye, Damilola
Curtis, Andrew
Kima, Daeyoun
Date
2019-01-17Citation
Henry, Christopher J., Christopher Storie, Muthu Palaniappan, Victor Alhassan, Mallikarjun Swamy, Damilola Aleshinloye, Andrew Curtis, and Daeyoun Kima. "Automated LULC Map Production using Deep Neural Networks." International Journal of Remote Sensing 40(11) (2019): 4416-4440. DOI: 10.1080/01431161.2018.1563840.
Abstract
This article presents an approach to automating the creation of land-use/land-cover classification (LULC) maps from satellite images using deep neural networks that were developed to perform semantic segmentation of natural images. This work is important since the production of accurate and timely LULC maps is becoming essential to government and private companies that rely on them for large-scale monitoring of land resource changes. In this work, deep neural networks are trained to classify each pixel of a satellite image into one of a number of LULC classes. The presented deep neural networks are all pre-trained using the ImageNet Large-Scale Visual Recognition Competition (ILSVRC) datasets and then fine-tuned using approximately 19,000 Landsat 5/7 satellite images of resolution 224×224 taken of the Province of Manitoba in Canada. The result is an automated solution that can produce LULC maps images significantly faster than current semi-automated methods. The contributions of this article are the observation that deep neural networks developed for semantic segmentation can be used to automate the task of producing LULC maps; the use of these networks to produce LULC maps; and a comparison of several popular semantic segmentation architectures for solving the problem of automated LULC map production.