Show simple item record

dc.contributor.authorCurrie, James D.
dc.contributor.authorNowotka, Dirk
dc.contributor.authorManea, Florin
dc.contributor.authorReshadi, Kamellia
dc.date.accessioned2019-12-11T18:33:41Z
dc.date.available2019-12-11T18:33:41Z
dc.date.issued2018-06-04
dc.identifier.citationTheor. Comput. Sci. 743: 72-82 (2018)en_US
dc.identifier.urihttp://hdl.handle.net/10680/1762
dc.description.abstractThue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent interest. Unary patterns with permutations have been previously analysed only for lengths up to 3. Consider a pattern $p=\pi_{i_1}(x)\ldots \pi_{i_r}(x)$, with $r\geq 4$, $x$ a word variable over an alphabet $\Sigma$ and $\pi_{i_j}$ function variables, to be replaced by morphic or antimorphic permutations of $\Sigma$. If $|\Sigma|\ge 3$, we show the existence of an infinite word avoiding all pattern instances having $|x|\geq 2$. If $|\Sigma|=3$ and all $\pi_{i_j}$ are powers of a single morphic or antimorphic $\pi$, the length restriction is removed. For the case when $\pi$ is morphic, the length dependency can be removed also for $|\Sigma|=4$, but not for $|\Sigma|=5$, as the pattern $x\pi^2(x)\pi^{56}(x)\pi^{33}(x)$ becomes unavoidable. Thus, in general, the restriction on $x$ cannot be removed, even for powers of morphic permutations. Moreover, we show that for every positive integer $n$ there exists $N$ and a pattern $\pi^{i_1}(x)\ldots \pi^{i_n}(x)$ which is unavoidable over all alphabets $\Sigma$ with at least $N$ letters and $\pi$ morphic or antimorphic permutation.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCombinatorics on words, avoidable patterns, patterns under permutationsen_US
dc.titleUnary patterns under permutationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2018.05.033en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record