Show simple item record

dc.contributor.authorZamboni, Luca Q.
dc.contributor.authorSaari, Kalle
dc.contributor.authorRampersad, Narad
dc.contributor.authorCurrie, James D.
dc.date.accessioned2019-12-12T22:03:10Z
dc.date.available2019-12-12T22:03:10Z
dc.date.issued2014-01-22
dc.identifier.citationDiscrete Math. 322 (2014) 53-60en_US
dc.identifier.urihttp://hdl.handle.net/10680/1763
dc.description.abstractGiven an infinite word x over an alphabet A, a letter b occurring in x, and a total order \sigma on A, we call the smallest word with respect to \sigma starting with b in the shift orbit closure of x an extremal word of x. In this paper we consider the extremal words of morphic words. If x = g(f^\omega(a)) for some morphisms f and g, we give two simple conditions on f and g that guarantees that all extremal words are morphic. This happens, in particular, when x is a primitive morphic or a binary pure morphic word. Our techniques provide characterizations of the extremal words of the Period-doubling word and the Chacon word and give a new proof of the form of the lexicographically least word in the shift orbit closure of the Rudin-Shapiro word.en_US
dc.description.uriwww.sciencedirect.com/science/article/pii/S0012365X14000065en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLexicographic order, morphic word, primitive morphic word, extremal word, Period-doubling word, Chacon word, Rudin-Shapiro worden_US
dc.titleExtremal words in morphic subshiftsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2014.01.002en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record